Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(8): e2309041, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041566

RESUMEN

Metal-organic frameworks (MOFs), which are highly ordered structures exhibiting sub-nanometer porosity, possess significant potential for diverse gas applications. However, their inherent insulative properties limit their utility in electrochemical gas sensing. This investigation successfully modifies the electrical conductivity of zeolitic imidazolte framework-8 (ZIF-8) employing a straightforward surface oxidation methodology. A ZIF-8 polycrystalline layer is applied on a wafer-scale oxide substrate and subjects to thermal annealing at 300 °C under ambient air conditions, resulting in nanoscale oxide layers while preserving the fundamental properties of the ZIF-8. Subsequent exposure to NO2 instigates the evolution of an electrically interconnected structure with the formation of electron-rich dopants derived from the decomposition of nitrogen-rich organic linkers. The N-carbon-hybridized ZnO/ZIF-8 device demonstrates remarkable sensitivity (≈130 ppm-1 ) and extreme selectivity in NO2 gas detection with a lower detection limit of 0.63 ppb under 150 °C operating temperature, surpassing the performance of existing sensing materials. The exceptional performances result from the Debye length scale dimensionality of ZnO and the high affinity of ZIF-8 to NO2 . The methodology for manipulating MOF conductivity through surface oxidation holds the potential to accelerate the development of MOF-hybridized conductive channels for a variety of electrical applications.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36500846

RESUMEN

The control of the structure, shape, and components of metal-organic frameworks, in which metal ions and organic ligands coordinate to form crystalline nanopore structures, plays an important role in the use of many electrochemical applications, such as energy storage, high-performance photovoltaic devices, and supercapacitors. In this study, systematic controls of synthesis variables were performed to control the morphology of ZIF-8 during the ZIF-L-to-ZIF-8 transformation of ZIF-L, which has the same building block as ZIF-8 but forms a two-dimensional structure. Furthermore, additional precursors or surfactants (Zn2+, 2mIm, and CTAB) were introduced during the transition to determine whether the alteration could be regulated. Lastly, the partial substitution insertion of a new organic precursor, 2abIm, during the ZIF-L-to-ZIF-8 transformation of ZIF-L was achieved, and modulation of the adsorption and pore characteristics (suppression of gate-opening properties of ZIF-8) has been confirmed.

3.
Membranes (Basel) ; 12(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295774

RESUMEN

The separation of C3 olefin and paraffin, which is essential for the production of propylene, can be facilitated by the ZIF-8 membrane. However, the commercial application of the membrane has not yet been achieved because the fabrication process does not meet industrial regulatory criteria. In this work, we provide a straightforward and cost-effective membrane fabrication technique that permits the rapid synthesis of ZIF-8 hollow fiber membranes. The scalability of the technology was confirmed by the incorporation of three ZIF-8 hollow fiber membranes into a single module using an introduced fiber mounting methodology. The molecular sieving characteristics of the ZIF-8 membrane module on a binary combination of C3 olefin and paraffin (C3H6/C3H8 selectivity of 110 and a C3H6 permeance of 13 GPU) were examined at atmospheric conditions. In addition, the high-pressure performance of these membranes was demonstrated at a 5 bar of equimolar binary feed pressure with a C3H6/C3H8 selectivity of 55 and a C3H6 permeance of 9 GPU due to propylene adsorption site saturation. To further accurately portray the separation performance of the membrane on an actual industrial feed, the effect of impurities (ethylene, ethane, butylene, i-butane, and n-butane), which can be found in C3 splitters, was investigated and a considerable decrement (~15%) in the propylene permeance upon an interaction with C4 hydrocarbons was confirmed. Finally, the long-term stability of the ZIF-8 membrane was confirmed by continuous operation for almost a month without any loss of its initial performance (C3H6/C3H8 separation factor of 110 and a C3H6 permeance of 13 GPU). From an industrial point of view, this straightforward technique could offer a number of merits such as a short synthesis time, minimal chemical requirements, and excellent reproductivity.

4.
Angew Chem Int Ed Engl ; 61(49): e202214269, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36202753

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are promising for gas separation membrane, but their molecular cut-off differs from that expected from its intrinsic aperture structure because of their flexibility. Herein, we introduced graphene nanoribbons (GNRs) to rigidify the ZIF framework. Because the sp2 edge of the GNRs induces strong anchoring effects, the modified layer can be rigidified. Particularly, when the GNRs were embedded and distributed in the ZIF-8 layer, an intrinsic aperture size of 3.4 Šwas observed, resulting in high H2 /CO2 separation (H2 permeance: 5.2×10-6  mol/m2 Pa s, ideal selectivity: 142). The performance surpasses the upper bound of polycrystalline MOF membrane performance. In addition, the membrane can be applied to blue H2 production, as demonstrated with a simulated steam reformed gas containing H2 /CO2 /CH4 . The separation performance was retained in the presence of water. The fundamentals of the molecular transport through the rigid ZIF-8 framework were revealed using molecular dynamics simulations.

5.
ACS Appl Mater Interfaces ; 12(24): 27368-27377, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32462877

RESUMEN

Metal-organic framework (MOF) membranes have attractive molecular separation properties but require challenging thin-film deposition techniques on expensive/specialty supports to obtain high performance relative to conventional polymer membranes. We demonstrate and analyze in detail the new concept of all-nanoporous hybrid membranes (ANHMs), which combines two or more nanoporous materials of different morphologies into a single membrane without the use of any polymeric materials. This allows access to a previously inaccessible region of very high permeability and selectivity properties, a feature that enables ANHMs to show high performance even when fabricated with simple coating and solvent evaporation methods on low-cost supports. We synthesize several types of ANHMs that combine the MOF material ZIF-8 with the high-silica zeolite MFI (the latter being employed in both nanoparticle and nanosheet forms). We show that continuous ANHMs can be obtained with high (∼50%) volume fractions of both MOF and zeolite components. Analysis of the multilayer microstructures of these ANHMs by multiple techniques allows estimation of the propylene/propane separation properties of individual ANHM layers, providing initial insight into the dramatically increased permeability and selectivity observed in ANHMs in relation to single-phase nanoporous membranes.

6.
Angew Chem Int Ed Engl ; 58(46): 16390-16394, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31568623

RESUMEN

Vapor phase ligand treatment (VPLT) of 2-aminobenzimidazole (2abIm) for 2-methylimidazole (2mIm) in ZIF-8 membranes prepared by two different methods (LIPS: ligand induced permselectivation and RTD: rapid thermal deposition) results in a notable shift of the molecular level cut-off to smaller molecules establishing selectivity improvements from ca. 1.8 to 5 for O2 /N2 ; 2.2 to 32 for CO2 /CH4 ; 2.4 to 24 for CO2 /N2 ; 4.8 to 140 for H2 /CH4 and 5.2 to 126 for H2 /N2 . Stable (based on a one-week test) oxygen-selective air separation performance at ambient temperature, 7 bar(a) feed, and 1 bar(a) sweep-free permeate with a mixture separation factor of 4.5 and oxygen flux of 2.6×10-3  mol m-2 s-1 is established. LIPS and RTD membranes exhibit fast and gradual evolution upon a 2abIm-VPLT, respectively, reflecting differences in their thickness and microstructure. Functional reversibility is demonstrated by showing that the original permeation properties of the VPLT-LIPS membranes can be recovered upon 2mIm-VPLT.

7.
ACS Appl Mater Interfaces ; 8(38): 25337-42, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27602800

RESUMEN

Propylene/propane (C3H6/C3H8) separations are performed on a large scale by energy-intensive distillation processes. Membranes based on metal-organic framework (MOF) molecular sieves, such as zeolitic imidazolate framework-8 (ZIF-8), offer the potential to perform these separations at considerably lower cost. However, the fabrication of scalable ZIF-8 membranes with high performance at elevated pressures and temperatures is challenging. We report the fabrication of high-quality ZIF-8 hollow fiber membranes in engineered polymeric hollow fibers via the interfacial microfluidic membrane processing (IMMP) technique. Control of fiber microstructure, as well as optimization of IMMP conditions, allow us to achieve a C3H6/C3H8 separation factor of 180 (at 1 bar and 25 °C), which remains high (60) at 120 °C. Furthermore, high-pressure operation of these membranes was investigated. Detailed permeation measurements indicate excellent suppression of defects at higher pressures up to 9.5 bar, allowing a C3H6/C3H8 separation factor of 90 at 9.5 bar. The membranes also display a 4-fold increase in flux at 9.5 bar as compared to operation at 1 bar. The long-term stability of the ZIF-8 hollow fiber membranes is demonstrated by continuous operation over a month without loss of C3H6 permeance or selectivity.

8.
J Am Chem Soc ; 137(12): 4191-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25774460

RESUMEN

Nanoporous zeolitic imidazolate frameworks (ZIFs) form structural topologies equivalent to zeolites. ZIFs containing only one type of imidazole linker show separation capability for limited molecular pairs. We show that the effective pore size, hydrophilicity, and organophilicity of ZIFs can be continuously and drastically tuned using mixed-linker ZIFs containing two types of linkers, allowing their use as a more general molecular separation platform. We illustrate this remarkable behavior by adsorption and diffusion measurements of hydrocarbons, alcohols, and water in mixed-linker ZIF-8(x)-90(100-x) materials with a large range of crystal sizes (338 nm to 120 µm), using volumetric, gravimetric, and PFG-NMR methods. NMR, powder FT-Raman, and micro-Raman spectroscopy unambiguously confirm the mixed-linker nature of individual ZIF crystals. Variation of the mixed-linker composition parameter (x) allows continuous control of n-butane, i-butane, butanol, and isobutanol diffusivities over 2-3 orders of magnitude and control of water and alcohol adsorption especially at low activities.


Asunto(s)
Imidazoles/química , Nanoestructuras/química , Zeolitas/química , Adsorción , Alcoholes/aislamiento & purificación , Butanos/aislamiento & purificación , Difusión , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nanoporos/ultraestructura , Porosidad , Agua/análisis
9.
Science ; 345(6192): 72-5, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24994649

RESUMEN

Molecular sieving metal-organic framework (MOF) membranes have great potential for energy-efficient chemical separations, but a major hurdle is the lack of a scalable and inexpensive membrane fabrication mechanism. We describe a route for processing MOF membranes in polymeric hollow fibers, combining a two-solvent interfacial approach for positional control over membrane formation (at inner and outer surfaces, or in the bulk, of the fibers), a microfluidic approach to replenishment or recycling of reactants, and an in situ module for membrane fabrication and permeation. We fabricated continuous molecular sieving ZIF-8 membranes in single and multiple poly(amide-imide) hollow fibers, with H2/C3H8 and C3H6/C3H8 separation factors as high as 370 and 12, respectively. We also demonstrate positional control of the ZIF-8 films and characterize the contributions of membrane defects and lumen bypass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...