Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893110

RESUMEN

Advancements in oncology, especially with the era of precision oncology, is resulting in a paradigm shift in cancer care. Indeed, innovative technologies, such as artificial intelligence, are paving the way towards enhanced diagnosis, prevention, and personalised treatments as well as novel drug discoveries. Despite excellent progress, the emergence of resistant cancers has curtailed both the pace and extent to which we can advance. By combining both their understanding of the fundamental biological mechanisms and technological advancements such as artificial intelligence and data science, cancer researchers are now beginning to address this. Together, this will revolutionise cancer care, by enhancing molecular interventions that may aid cancer prevention, inform clinical decision making, and accelerate the development of novel therapeutic drugs. Here, we will discuss the advances and approaches in both artificial intelligence and precision oncology, presented at the 59th Irish Association for Cancer Research annual conference.

2.
NPJ Breast Cancer ; 9(1): 72, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758711

RESUMEN

HER2-positive (HER2+) breast cancer accounts for 20-25% of all breast cancers. Predictive biomarkers of neoadjuvant therapy response are needed to better identify patients with early stage disease who may benefit from tailored treatments in the adjuvant setting. As part of the TCHL phase-II clinical trial (ICORG10-05/NCT01485926) whole exome DNA sequencing was carried out on normal-tumour pairs collected from 22 patients. Here we report predictive modelling of neoadjuvant therapy response using clinicopathological and genomic features of pre-treatment tumour biopsies identified age, estrogen receptor (ER) status and level of immune cell infiltration may together be important for predicting response. Clonal evolution analysis of longitudinally collected tumour samples show subclonal diversity and dynamics are evident with potential therapy resistant subclones detected. The sources of greater pre-treatment immunogenicity associated with a pathological complete response is largely unexplored in HER2+ tumours. However, here we point to the possibility of APOBEC associated mutagenesis, specifically in the ER-neg/HER2+ subtype as a potential mediator of this immunogenic phenotype.

3.
Br J Cancer ; 129(6): 1022-1031, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507543

RESUMEN

BACKGROUND: The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS: Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS: PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Leucocitos Mononucleares/metabolismo , Terapia Neoadyuvante , Neoplasias/tratamiento farmacológico , Fenotipo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología
4.
PLoS One ; 18(3): e0282512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920947

RESUMEN

Triple Negative Breast Cancer (TNBC), a subtype of breast cancer, has fewer successful therapeutic therapies than other types of breast cancer. Insulin-like growth factor receptor 1 (IGF1R) and the Insulin receptor (IR) are associated with poor outcomes in TNBC. Targeting IGF1R has failed clinically. We aimed to test if inhibiting both IR/IGF1R was a rationale therapeutic approach to treat TNBC. We showed that despite IGF1R and IR being expressed in TNBC, their expression is not associated with a negative survival outcome. Furthermore, targeting both IR/IGF1R with inhibitors in multiple TNBC cell lines did not inhibit cell growth. Linsitinib, a small molecule inhibitor of both IGF1R and IR, did not block tumour formation and had no effect on tumour growth in vivo. Cumulatively these data suggest that while IGF1R and IR are expressed in TNBC, they are not good therapeutic targets. A potential reason for the limited anti-cancer impact when IR/IGF1R was targeted may be because multiple signalling pathways are altered in TNBC. Therefore, targeting individual signalling pathways may not be sufficient to inhibit cancer growth.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina , Línea Celular Tumoral , Receptores de Somatomedina/metabolismo , Proliferación Celular
5.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551698

RESUMEN

Innovation in both detection and treatment of cancer is necessary for the constant improvement in therapeutic strategies, especially in patients with novel or resistant variants of cancer. Cancer mortality rates have declined by almost 30% since 1991, however, depending on the cancer type, acquired resistance can occur to varying degrees. To combat this, researchers are looking towards advancing our understanding of cancer biology, in order to inform early detection, and guide novel therapeutic approaches. Through combination of these approaches, it is believed that a more complete and thorough intervention on cancer can be achieved. Here, we will discuss the advances and approaches in both detection and treatment of cancer, presented at the 58th Irish Association for Cancer Research (IACR) annual conference.

6.
Cancer Drug Resist ; 5(3): 560-576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176752

RESUMEN

Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.

7.
J Pers Med ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36013226

RESUMEN

Triple negative breast cancer (TNBC) remains a therapeutic challenge due to the lack of targetable genetic alterations and the frequent development of resistance to the standard cisplatin-based chemotherapies. Here, we have taken a systems biology approach to investigate kinase signal transduction networks that are involved in TNBC resistance to cisplatin. Treating a panel of cisplatin-sensitive and cisplatin-resistant TNBC cell lines with a panel of kinase inhibitors allowed us to reconstruct two kinase signalling networks that characterise sensitive and resistant cells. The analysis of these networks suggested that the activation of the PI3K/AKT signalling pathway is critical for cisplatin resistance. Experimental validation of the computational model predictions confirmed that TNBC cell lines with activated PI3K/AKT signalling are sensitive to combinations of cisplatin and PI3K/AKT pathway inhibitors. Thus, our results reveal a new therapeutic approach that is based on identifying targeted therapies that synergise with conventional chemotherapies.

8.
Clin Cancer Res ; 27(3): 807-818, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122343

RESUMEN

PURPOSE: Antibody-dependent cell-mediated cytotoxicity (ADCC) is one mechanism of action of the monoclonal antibody (mAb) therapies trastuzumab and pertuzumab. Tyrosine kinase inhibitors (TKIs), like lapatinib, may have added therapeutic value in combination with mAbs through enhanced ADCC activity. Using clinical data, we examined the impact of lapatinib on HER2/EGFR expression levels and natural killer (NK) cell gene signatures. We investigated the ability of three TKIs (lapatinib, afatinib, and neratinib) to alter HER2/immune-related protein levels in preclinical models of HER2-positive (HER2+) and HER2-low breast cancer, and the subsequent effects on trastuzumab/pertuzumab-mediated ADCC. EXPERIMENTAL DESIGN: Preclinical studies (proliferation assays, Western blotting, high content analysis, and flow cytometry) employed HER2+ (SKBR3 and HCC1954) and HER2-low (MCF-7, T47D, CAMA-1, and CAL-51) breast cancer cell lines. NCT00524303 provided reverse phase protein array-determined protein levels of HER2/pHER2/EGFR/pEGFR. RNA-based NK cell gene signatures (CIBERSORT/MCP-counter) post-neoadjuvant anti-HER2 therapy were assessed (NCT00769470/NCT01485926). ADCC assays utilized flow cytometry-based protocols. RESULTS: Lapatinib significantly increased membrane HER2 levels, while afatinib and neratinib significantly decreased levels in all preclinical models. Single-agent lapatinib increased HER2 or EGFR levels in 10 of 11 (91%) tumor samples. NK cell signatures increased posttherapy (P = 0.03) and associated with trastuzumab response (P = 0.01). TKI treatment altered mAb-induced NK cell-mediated ADCC in vitro, but it did not consistently correlate with HER2 expression in HER2+ or HER2-low models. The ADCC response to trastuzumab and pertuzumab combined did not exceed either mAb alone. CONCLUSIONS: TKIs differentially alter tumor cell phenotype which can impact NK cell-mediated response to coadministered antibody therapies. mAb-induced ADCC response is relevant when rationalizing combinations for clinical investigation.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/terapia , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Lapatinib/farmacología , Lapatinib/uso terapéutico , Células MCF-7 , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , RNA-Seq , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Adulto Joven
9.
Invest New Drugs ; 39(2): 587-594, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33052557

RESUMEN

Background The MYC oncogene is one of the most frequently altered driver genes in cancer. MYC is thus a potential target for cancer treatment as well as a biomarker for the disease. However, as a target for treatment, MYC has traditionally been regarded as "undruggable" or difficult to target. We set out to evaluate the efficacy of a novel MYC inhibitor known as MYCMI-6, which acts by preventing MYC from interacting with its cognate partner MAX. Methods MYCMI-6 response was assessed in a panel of breast cancer cell lines using MTT assays and flow cytometry. MYC gene amplification, mRNA and protein expression was analysed using the TCGA and METABRIC databases. Results MYCMI-6 inhibited cell growth in breast cancer cell lines with IC50 values varying form 0.3 µM to >10 µM. Consistent with its ability to decrease cell growth, MYCMI-6 was found to induce apoptosis in two cell lines in which growth was inhibited but not in two cell lines that were resistant to growth inhibition. Across all breast cancers, MYC was found to be amplified in 15.3% of cases in the TCGA database and 26% in the METABRIC database. Following classification of the breast cancers by their molecular subtypes, MYC was most frequently amplified and exhibited highest expression at both mRNA and protein level in the basal subtype. Conclusions Based on these findings, we conclude that for patients with breast cancer, anti-MYC therapy is likely to be most efficacious in patients with the basal subtype.


Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Genes myc/efectos de los fármacos , Piridinas/farmacología , Biomarcadores de Tumor , Ciclo Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Peso Molecular , ARN Mensajero
10.
Invest New Drugs ; 38(5): 1365-1372, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32318883

RESUMEN

Introduction Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer that carries a poorer prognosis. There remains a need to identify novel drivers of TNBC, which may represent targets to treat the disease. c-Met overexpression is linked with decreased survival and is associated with the basal subtype of breast cancer. Cpd A, a kinase inhibitor selective/specific for Met kinase has demonstrated preclinical anti-cancer efficacy in TNBC. We aimed to assess the anti-cancer efficacy of Cpd A when combined with Src kinase, ErbB-family or hepatocyte growth factor (HGF) inhibitors in TNBC cell lines. Methods We determined the anti-proliferative effects of Cpd A, rilotumumab, neratinib and saracatinib tested alone and in combination in a panel of TNBC cells by acid phosphatase assays. We performed reverse phase protein array analysis of c-Met and IGF1Rß expression and phosphorylation of c-Met (Y1234/1235) in TNBC cells and correlated their expression/phosphorylation with Cpd A sensitivity. We examined the impact of Cpd A, neratinib and saracatinib tested alone and in combination on invasive potential and colony formation.Results TNBC cells are not inherently sensitive to Cpd A, and neither c-Met expression nor phosphorylation are biomarkers of sensitivity to Cpd A. Cpd A enhanced the anti-proliferative effects of neratinib in vitro; however, this effect was limited to cell lines with innate sensitivity to Cpd A. Cpd A had limited anti-invasive effects but it reduced colony formation in the TNBC cell line panel.Conclusions Despite Cpd A having a potential role in reducing cancer cell metastasis, identification of strong predictive biomarkers of c-Met sensitivity would be essential to the development of a c-Met targeted treatment for an appropriately selected cohort of TNBC patients.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fosfatasa Ácida/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
11.
Ther Adv Med Oncol ; 12: 1758835919897546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32064003

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Epidermal growth factor receptor (EGFR) has been shown to be over-expressed in TNBC and represents a rational treatment target. METHODS: We examined single agent and combination effects for afatinib and dasatinib in TNBC. We then determined IC50 and combination index values using Calcusyn. Functional analysis of single and combination treatments was performed using reverse phase protein array and cell cycle analysis. Finally, we determined the anticancer effects of the combination in vivo. RESULTS: A total of 14 TNBC cell lines responded to afatinib with IC50 values ranging from 0.008 to 5.0 µM. Three cell lines, belonging to the basal-like subtype of TNBC, were sensitive to afatinib. The addition of afatinib enhanced response to the five other targeted therapies in HCC1937 and HDQP1 cells. The combination of afatinib with dasatinib caused the greatest growth inhibition in both cell lines. The afatinib/dasatinib combination was synergistic and/or additive in 13/14 TNBC cell lines. Combined afatinib/dasatinib treatment induced G1 cell cycle arrest. Reverse phase protein array results showed the afatinib/dasatinib combination resulted in efficient inhibition of both pERK(T202/T204) and pAkt(S473) signalling in BT20 cells, which was associated with the greatest antiproliferative effects. High baseline levels of pSrc(Y416) and pMAPK(p38) correlated with sensitivity to afatinib, whereas low levels of B-cell lymphoma 2 (Bcl2) and mammalian target of rapamycin (mTOR) correlated with synergistic growth inhibition by combined afatinib and dasatinib treatment. In vivo, the combination treatment inhibited tumour growth in a HCC1806 xenograft model. CONCLUSIONS: We demonstrate that afatinib combined with dasatinib has potential clinical activity in TNBC but warrants further preclinical investigation.

12.
Oncogene ; 39(14): 3028-3040, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042115

RESUMEN

The proviral integration of Moloney virus (PIM) family of protein kinases are overexpressed in many haematological and solid tumours. PIM kinase expression is elevated in PI3K inhibitor-treated breast cancer samples, suggesting a major resistance pathway for PI3K inhibitors in breast cancer, potentially limiting their clinical utility. IBL-302 is a novel molecule that inhibits both PIM and PI3K/AKT/mTOR signalling. We thus evaluated the preclinical activity of IBL-302, in a range of breast cancer models. Our results demonstrate in vitro efficacy of IBL-302 in a range of breast cancer cell lines, including lines with acquired resistance to trastuzumab and lapatinib. IBL-302 demonstrated single-agent, anti-tumour efficacy in suppression of pAKT, pmTOR and pBAD in the SKBR-3, BT-474 and HCC-1954 HER2+/PIK3CA-mutated cell lines. We have also shown the in vivo single-agent efficacy of IBL-302 in the subcutaneous BT-474 and HCC-1954 xenograft model in BALB/c nude mice. The combination of trastuzumab and IBL-302 significantly increased the anti-proliferative effect in HER2+ breast cancer cell line, and matched trastuzumab-resistant line, relative to testing either drug alone. We thus believe that the novel PIM and PI3K/mTOR inhibitor, IBL-302, represents an exciting new potential treatment option for breast cancer, and that it should be considered for clinical investigation.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tiofenos/farmacología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Lapatinib/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trastuzumab/farmacología
13.
Ther Adv Med Oncol ; 11: 1758835919864236, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31384312

RESUMEN

BACKGROUND: Combining bevacizumab and chemotherapy produced superior response rates compared with chemotherapy alone in metastatic breast cancer. As bevacizumab may cause hypertension (HTN) and increase the risk of cardiac failure, we performed a pilot study to evaluate the feasibility and toxicity of a non-anthracycline-containing combination of docetaxel with cyclophosphamide and bevacizumab in early stage breast cancer patients. METHODS: Treatment consisted of four 3-weekly cycles of docetaxel and cyclophosphamide (75/600 mg/m2). Bevacizumab was administered 15 mg/kg intravenously on day 1, and then every 3 weeks to a total of 18 cycles of treatment. Serum biomarker concentrations of vascular endothelial growth factor (VEGF), cardiac troponin-I (cTnI), myeloperoxidase (MPO), and placental growth factor (PlGF) were quantified using enzyme-linked immunosorbent assay (ELISA) in 62 patients at baseline and whilst on treatment to determine their utility as biomarkers of cardiotoxicity, indicated by left ventricular ejection fraction (LVEF). RESULTS: A total of 106 patients were accrued in nine sites. Median follow up was 65 months (1-72 months). Seventeen protocol-defined relapse events were observed, accounting for an overall disease-free survival (DFS) rate of 84%. The DFS rates for hormone receptor positive (HR+) and triple-negative (TN) patients were 95% versus 43%, respectively. The median time to relapse was 25 (12-54) months in TN patients versus 38 (22-71) months in HR+ patients. There have been 13 deaths related to breast cancer . The overall survival (OS) rate was 88%. The 5-year OS rate in HR+ versus TN was 95% versus 57%. None of the measured biomarkers predicted the development of cardiotoxicity. CONCLUSIONS: We observed a low relapse rate in node-positive, HR+ patients; however, results in TN breast cancer were less encouraging. Given the negative results of three large phase III trials, it is unlikely that this approach will be investigated further. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00911716.

14.
Cancers (Basel) ; 11(4)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999598

RESUMEN

In pre-clinical studies, triple-negative breast cancer (TNBC) cells have demonstrated sensitivity to the multi-targeted kinase inhibitor dasatinib; however, clinical trials with single-agent dasatinib showed limited efficacy in unselected populations of breast cancer, including TNBC. To study potential mechanisms of resistance to dasatinib in TNBC, we established a cell line model of acquired dasatinib resistance (231-DasB). Following an approximately three-month exposure to incrementally increasing concentrations of dasatinib (200 nM to 500 nM) dasatinib, 231-DasB cells were resistant to the agent with a dasatinib IC50 value greater than 5 µM compared to 0.04 ± 0.001 µM in the parental MDA-MB-231 cells. 231-DasB cells also showed resistance (2.2-fold) to the Src kinase inhibitor PD180970. Treatment of 231-DasB cells with dasatinib did not inhibit phosphorylation of Src kinase. The 231-DasB cells also had significantly increased levels of p-Met compared to the parental MDA-MB-231 cells, as measured by luminex, and resistant cells demonstrated a significant increase in sensitivity to the c-Met inhibitor, CpdA, with an IC50 value of 1.4 ± 0.5 µM compared to an IC50 of 6.8 ± 0.2 µM in the parental MDA-MB-231 cells. Treatment with CpdA decreased p-Met and p-Src in both 231-DasB and MDA-MB-231 cells. Combined treatment with dasatinib and CpdA significantly inhibited the growth of MDA-MB-231 parental cells and prevented the emergence of dasatinib resistance. If these in vitro findings can be extrapolated to human cancer treatment, combined treatment with dasatinib and a c-Met inhibitor may block the development of acquired resistance and improve response rates to dasatinib treatment in TNBC.

15.
BMC Cancer ; 18(1): 965, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305055

RESUMEN

BACKGROUND: Lapatinib has clinical efficacy in the treatment of trastuzumab-refractory HER2-positive breast cancer. However, a significant proportion of patients develop progressive disease due to acquired resistance to the drug. Induction of apoptotic cell death is a key mechanism of action of lapatinib in HER2-positive breast cancer cells. METHODS: We examined alterations in regulation of the intrinsic and extrinsic apoptosis pathways in cell line models of acquired lapatinib resistance both in vitro and in patient samples from the NCT01485926 clinical trial, and investigated potential strategies to exploit alterations in apoptosis signalling to overcome lapatinib resistance in HER2-positive breast cancer. RESULTS: In this study, we examined two cell lines models of acquired lapatinib resistance (SKBR3-L and HCC1954-L) and showed that lapatinib does not induce apoptosis in these cells. We identified alterations in members of the BCL-2 family of proteins, in particular MCL-1 and BAX, which may play a role in resistance to lapatinib. We tested the therapeutic inhibitor obatoclax, which targets MCL-1. Both SKBR3-L and HCC1954-L cells showed greater sensitivity to obatoclax-induced apoptosis than parental cells. Interestingly, we also found that the development of acquired resistance to lapatinib resulted in acquired sensitivity to TRAIL in SKBR3-L cells. Sensitivity to TRAIL in the SKBR3-L cells was associated with reduced phosphorylation of AKT, increased expression of FOXO3a and decreased expression of c-FLIP. In SKBR3-L cells, TRAIL treatment caused activation of caspase 8, caspase 9 and caspase 3/7. In a second resistant model, HCC1954-L cells, p-AKT levels were not decreased and these cells did not show enhanced sensitivity to TRAIL. Furthermore, combining obatoclax with TRAIL improved response in SKBR3-L cells but not in HCC1954-L cells. CONCLUSIONS: Our findings highlight the possibility of targeting altered apoptotic signalling to overcome acquired lapatinib resistance, and identify potential novel treatment strategies, with potential biomarkers, for HER2-positive breast cancer that is resistant to HER2 targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Lapatinib/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Proteína Forkhead Box O3/biosíntesis , Expresión Génica/efectos de los fármacos , Genes erbB-2 , Humanos , Lapatinib/uso terapéutico , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico
16.
PLoS One ; 13(8): e0200996, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30071039

RESUMEN

Breast cancer is the leading cause of cancer related deaths in women worldwide and is classified into subtypes based on the cancer's receptor status. Of these subtypes, those expressing the human epidermal growth factor receptor 2 (HER2) receptor were traditionally associated with poor prognosis. Several advances have been made in the treatment of HER2-positive breast cancer, yet issues of resistance and poor response to therapy remains prevalent. In this study we explored the impact of HER-family and homologous recombination deficiency SNPs on response to patients who received TCH-based (docetaxel (T), carboplatin (C), and trastuzumab (H)) treatment versus those who received other treatment regimens. Using Cox regression analysis, we identified 6 SNPs that correlate with recurrence free survival in our patients and supported our findings using support vector machines. We also used reverse phase protein array analysis to examine the impact ERBB3 SNPs may have on both the PI3K/AKT and MAPK/ERK signaling pathways. Finally, using cell line models, we correlated SNP status with sensitivity to platinum based drugs and docetaxel. We found that patients on a TCH based regimen with the minor allele of the ERBB3 (rs2229046 and rs773123) and BARD1 (rs2070096) SNPs, were significantly more likely to relapse than those women who were not. Additionally, we observed that patients with these ERBB3 SNPs had shown elevated protein expression/phosphorylation of Src kinase, c-MET (Y1234/1235), GSK-3ß (S9) and p27, indicating that these SNPs are associated with non-PI3K/AKT signaling. Finally, using cell line models, we demonstrate that the BARD1 SNP (rs2229571) is associated with greater sensitivity to both carboplatin and cisplatin. The BARD1 and ERBB3 SNPs can potentially be used to determine those patients that will have a worse response to TCH based treatment, an effect that may arise from the SNPs impact on altered cellular signaling.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Carboplatino/uso terapéutico , Línea Celular Tumoral , Supervivencia sin Enfermedad , Docetaxel/uso terapéutico , Femenino , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Pronóstico , Receptor ErbB-2/genética , Máquina de Vectores de Soporte , Trastuzumab/uso terapéutico
17.
Ther Adv Med Oncol ; 10: 1758835918778297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30023006

RESUMEN

BACKGROUND: Somatic mutations in the ERBB genes (epidermal growth factor receptor: EGFR, ERBB2, ERBB3, ERBB4) promote oncogenesis and lapatinib resistance in metastatic HER2+ (human epidermal growth factor-like receptor 2) breast cancer in vitro. Our study aimed to determine the frequency of mutations in four genes: EGFR, ERBB2, ERBB3 and ERBB4 and to investigate whether these mutations affect cellular behaviour and therapy response in vitro and outcomes after adjuvant trastuzumab-based therapy in clinical samples. METHODS: We performed Agena MassArray analysis of 227 HER2+ breast cancer samples to identify the type and frequency of ERBB family mutations. Of these, two mutations, the somatic mutations ERBB4-V721I and ERBB4-S303F, were stably transfected into HCC1954 (PIK3CA mutant), HCC1569 (PIK3CA wildtype) and BT474 (PIK3CA mutant, ER positive) HER2+ breast cancer cell lines for functional in vitro experiments. RESULTS: A total of 12 somatic, likely deleterious mutations in the kinase and furin-like domains of the ERBB genes (3 EGFR, 1 ERBB2, 3 ERBB3, 5 ERBB4) were identified in 7% of HER2+ breast cancers, with ERBB4 the most frequently mutated gene. The ERBB4-V721I kinase domain mutation significantly increased 3D-colony formation in 3/3 cell lines, whereas ERBB4-S303F did not increase growth rate or 3D colony formation in vitro. ERBB4-V721I sensitized HCC1569 cells (PIK3CA wildtype) to the pan class I PI3K inhibitor copanlisib but increased resistance to the pan-HER family inhibitor afatinib. The combinations of copanlisib with trastuzumab, lapatinib, or afatinib remained synergistic regardless of ERBB4-V721I or ERBB4-S303F mutation status. CONCLUSIONS: ERBB gene family mutations, which are present in 7% of our HER2+ breast cancer cohort, may have the potential to alter cellular behaviour and the efficacy of HER- and PI3K-inhibition.

18.
Ther Adv Med Oncol ; 10: 1758834017746040, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29383036

RESUMEN

Background: The application of genomic technologies to patient tumor samples identified groups of signaling pathways which acquire activating mutations. Some cancers are dependent on these mutations and the aberrant proteins resulting from these mutations can be targeted by novel drugs which can eradicate the cancer. Methods: We used www.cbioportal.org to determine the frequency of ERBB mutations in solid tumors. We then determined the sensitivity of a panel of cell lines to clinically available PI3K inhibitors. Using proliferation and apoptosis assays as well as functional interrogation with reverse phase protein arrays we demonstrated the impact of targeting ERBB-mutant cancers with the combination of a PI3K inhibitor and the pan-HER family inhibitor afatinib. Results: In over 14,000 patients we found that 12% of their tumors have an ERBB family gene mutation (EGFR, ERBB2, ERBB3 and ERBB4). In cancers not commonly associated with HER family protein overexpression, such as ovarian, endometrial, melanoma and head and neck cancers (n = 2116), we found that ERBB family mutations are enriched, occurring at rates from 14% to 34% and commonly co-occur with PIK3CA mutations. Importantly, we demonstrate that ERBB family mutant cancers are sensitive to treatment with PI3K inhibitors. Finally we show that the combination of afatinib and copanlisib represents a novel therapeutic strategy for patients whose cancers harbor both ERBB family and PIK3CA mutation. Conclusions: We demonstrate that ERBB family mutations are common in cancers not associated with overexpression or amplification of HER family proteins. These ERBB family mutant cancers are sensitive to treatment with PI3K inhibitors, and when combined with pan-HER inhibitors have synergistic antiproliferative effects.

19.
Invest New Drugs ; 36(4): 581-589, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29396630

RESUMEN

As HER2 is a client protein of the molecular chaperone Hsp90, targeting Hsp90 may be beneficial in HER2-positive breast cancer. In this study, the activity of the Hsp90 inhibitor NVP-AUY922 was assessed in HER2 overexpressing breast cancer cell lines, including two cell line models of acquired trastuzumab-resistance. The seven HER2-positive breast cancer cell lines tested showed significant sensitivity to NVP-AUY922 in vitro, with IC50 values between 6 and 17 nM. Combining NVP-AUY922 with chemotherapy did not improve response. NVP-AUY922 in combination with trastuzumab, significantly enhanced growth inhibition in three of the seven cell lines tested. In conclusion, our data shows that NVP-AUY922 displays potent anti-cancer activity in HER2-positive and trastuzumab-resistant breast cancer cells, and supports further testing of NVP-AUY922 in patients with HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Receptor ErbB-2/genética , Resorcinoles/farmacología , Trastuzumab/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos
20.
Oncotarget ; 8(49): 85120-85135, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156708

RESUMEN

PURPOSE: The MEK/MAPK pathway is commonly activated in HER2-positive breast cancer, but little investigation of targeting this pathway has been undertaken. Here we present the results of an in vitro preclinical evaluation of refametinib, an allosteric MEK1/2 inhibitor, in HER2-positive breast cancer cell lines including models of acquired resistance to trastuzumab or lapatinib. METHODS: A panel of HER2-positive breast cancer cells were profiled for mutational status and also for anti-proliferative response to refametinib alone and in combination with the PI3K inhibitor (PI3Ki) copanlisib and the HER2-targeted therapies trastuzumab and lapatinib. Reverse phase protein array (RPPA) was used to determine the effect of refametinib alone and in combination with PI3Ki and HER2-inhibitors on expression and phosphorylation of proteins in the PI3K/AKT and MEK/MAPK pathways. We validated our proteomic in vitro findings by utilising RPPA analysis of patients who received either trastuzumab, lapatinib or the combination of both drugs in the NCT00524303/LPT109096 clinical trial. RESULTS: Refametinib has anti-proliferative effects when used alone in 2/3 parental HER2-positive breast cancer cell lines (HCC1954, BT474), along with 3 models of these 2 cell lines with acquired trastuzumab or lapatinib resistance (6 cell lines tested). Refametinib treatment led to complete inhibition of MAPK signalling. In HCC1954, the most refametinib-sensitive cell line (IC50= 397 nM), lapatinib treatment inhibits phosphorylation of MEK and MAPK but activates AKT phosphorylation, in contrast to the other 2 parental cell lines tested (BT474-P, SKBR3-P), suggesting that HER2 may directly activate MEK/MAPK and not PI3K/AKT in HCC1954 cells but not in the other 2 cell lines, perhaps explaining the refametinib-sensitivity of this cell line. Using RPPA data from patients who received either trastuzumab, lapatinib or the combination of both drugs together with chemotherapy in the NCT00524303 clinical trial, we found that 18% (n=38) of tumours had decreased MAPK and increased AKT phosphorylation 14 days after treatment with HER2-targeted therapies. The combination of MEK inhibition (MEKi) with refametinib and copanlisib led to synergistic inhibition of growth in 4/6 cell lines tested (CI @ED75 = 0.39-0.75), whilst the combinations of lapatinib and refametinib led to synergistic inhibition of growth in 3/6 cell lines (CI @ED75 = 0.39-0.80). CONCLUSION: Refametinib alone or in combination with copanlisib or lapatinib could represent an improved treatment strategy for some patients with HER2-positive breast cancer, and should be considered for clinical trial evaluation. The direct down-regulation of MEK/MAPK but not AKT signalling by HER2 inhibition (e.g. by lapatinib or trastuzumab), which we demonstrate occurs in 18% of HER2-positive breast cancers may serve as a potential biomarker of responsiveness to the MEK inhibitor refametinib.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA