Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 115(5): 1115-1128, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526235

RESUMEN

PURPOSE: 131I-metaiodobenzylguanidine (131I-MIBG) has demonstrated efficacy as a single agent in neuroblastoma. Recent trials have focused on 131I-MIBG combination strategies, though little is known about the effect of putative radiosensitizers on biological markers of radiation exposure. METHODS AND MATERIALS: NANT2011-01 evaluated 131I-MIBG therapy alone (arm A) or in combination with vincristine/irinotecan (arm B) or vorinostat (arm C) for patients with relapsed or refractory neuroblastoma. Blood samples were collected before and after 131I-MIBG infusion to determine levels of radiation-associated biomarkers (transcript and protein). The association of biomarker with treatment arm, clinical response, and treatment toxicity was analyzed. RESULTS: The cohort included 99 patients who had at least 1 biomarker available for analysis. Significant modulation in most biomarkers between baseline, 72, and 96 hours following 131I-MIBG was observed. Patients in arm C had the lowest degree of modulation in FLT3 ligand protein. Lower baseline BCL2 transcript levels were associated with higher overall response. Patients with greater increases in FLT3 ligand at 96 hours after 131I-MIBG therapy were significantly more likely to have grade 4 thrombocytopenia. Peripheral blood gene expression of the BCL2 family of apoptotic markers (BCL2L1 and BAX transcripts) was significantly associated with grade 4 hematologic toxicity. RNA sequencing demonstrated little overlap in the top modulated peripheral blood transcripts between randomized arms. CONCLUSIONS: Peripheral blood biomarkers relevant to radiation exposure demonstrate significant modulation after 131I-MIBG and concomitant radiation sensitizers affect extent of modulation. Biomarkers related to hematopoietic damage and apoptosis were associated with hematologic toxicity.


Asunto(s)
Neuroblastoma , Fármacos Sensibilizantes a Radiaciones , Humanos , 3-Yodobencilguanidina/efectos adversos , Fármacos Sensibilizantes a Radiaciones/efectos adversos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/radioterapia , Biomarcadores , Proteínas Proto-Oncogénicas c-bcl-2
2.
Artículo en Inglés | MEDLINE | ID: mdl-38741937

RESUMEN

Introduction: Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods: In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results: Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion: These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296810

RESUMEN

Curcumin, a natural polyphenol derived from the spice turmeric (Curcuma longa), contains antioxidant, anti-inflammatory, and anti-cancer properties. However, curcumin bioavailability is inherently low due to poor water solubility and rapid metabolism. Here, we further refined for use curcumin incorporated into "biomimetic" nanolipoprotein particles (cNLPs) consisting of a phospholipid bilayer surrounded by apolipoprotein A1 and amphipathic polymer scaffolding moieties. Our cNLP formulation improves the water solubility of curcumin over 30-fold and produces nanoparticles with ~350 µg/mL total loading capacity for downstream in vitro and in vivo applications. We found that cNLPs were well tolerated in AG05965/MRC-5 human primary lung fibroblasts compared to cultures treated with curcumin solubilized in DMSO (curDMSO). Pre-treatment with cNLPs of quiescent G0/G1-phase MRC-5 cultures improved cell survival following 137Cs gamma ray irradiations, although this finding was reversed in asynchronously cycling log-phase cell cultures. These findings may be useful for establishing cNLPs as a method to improve curcumin bioavailability for administration as a radioprotective and/or radiomitigative agent against ionizing radiation (IR) exposures in non-cycling cells or as a radiosensitizing agent for actively dividing cell populations, such as tumors.

4.
Front Cardiovasc Med ; 9: 886689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811715

RESUMEN

During spaceflight, astronauts are exposed to various physiological and psychological stressors that have been associated with adverse health effects. Therefore, there is an unmet need to develop novel diagnostic tools to predict early alterations in astronauts' health. Small nucleolar RNA (snoRNA) is a type of short non-coding RNA (60-300 nucleotides) known to guide 2'-O-methylation (Nm) or pseudouridine (ψ) of ribosomal RNA (rRNA), small nuclear RNA (snRNA), or messenger RNA (mRNA). Emerging evidence suggests that dysregulated snoRNAs may be key players in regulating fundamental cellular mechanisms and in the pathogenesis of cancer, heart, and neurological disease. Therefore, we sought to determine whether the spaceflight-induced snoRNA changes in astronaut's peripheral blood (PB) plasma extracellular vesicles (PB-EV) and peripheral blood mononuclear cells (PBMCs). Using unbiased small RNA sequencing (sRNAseq), we evaluated changes in PB-EV snoRNA content isolated from astronauts (n = 5/group) who underwent median 12-day long Shuttle missions between 1998 and 2001. Using stringent cutoff (fold change > 2 or log2-fold change >1, FDR < 0.05), we detected 21 down-and 9-up-regulated snoRNAs in PB-EVs 3 days after return (R + 3) compared to 10 days before launch (L-10). qPCR validation revealed that SNORA74A was significantly down-regulated at R + 3 compared to L-10. We next determined snoRNA expression levels in astronauts' PBMCs at R + 3 and L-10 (n = 6/group). qPCR analysis further confirmed a significant increase in SNORA19 and SNORA47 in astronauts' PBMCs at R + 3 compared to L-10. Notably, many downregulated snoRNA-guided rRNA modifications, including four Nms and five ψs. Our findings revealed that spaceflight induced changes in PB-EV and PBMCs snoRNA expression, thus suggesting snoRNAs may serve as potential novel biomarkers for monitoring astronauts' health.

5.
J Vis Exp ; (181)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35377358

RESUMEN

Subunit vaccines offer advantages over more traditional inactivated or attenuated whole-cell-derived vaccines in safety, stability, and standard manufacturing. To achieve an effective protein-based subunit vaccine, the protein antigen often needs to adopt a native-like conformation. This is particularly important for pathogen-surface antigens that are membrane-bound proteins. Cell-free methods have been successfully used to produce correctly folded functional membrane protein through the co-translation of nanolipoprotein particles (NLPs), commonly known as nanodiscs. This strategy can be used to produce subunit vaccines consisting of membrane proteins in a lipid-bound environment. However, cell-free protein production is often limited to small scale (<1 mL). The amount of protein produced in small-scale production runs is usually sufficient for biochemical and biophysical studies. However, the cell-free process needs to be scaled up, optimized, and carefully tested to obtain enough protein for vaccine studies in animal models. Other processes involved in vaccine production, such as purification, adjuvant addition, and lyophilization, need to be optimized in parallel. This paper reports the development of a scaled-up protocol to express, purify, and formulate a membrane-bound protein subunit vaccine. Scaled-up cell-free reactions require optimization of plasmid concentrations and ratios when using multiple plasmid expression vectors, lipid selection, and adjuvant addition for high-level production of formulated nanolipoprotein particles. The method is demonstrated here with the expression of a chlamydial major outer membrane protein (MOMP) but may be widely applied to other membrane protein antigens. Antigen effectiveness can be evaluated in vivo through immunization studies to measure antibody production, as demonstrated here.


Asunto(s)
Chlamydia muridarum , Adyuvantes Inmunológicos , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Chlamydia muridarum/química , Proteínas Recombinantes/genética , Desarrollo de Vacunas
6.
Nat Commun ; 13(1): 1511, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314680

RESUMEN

Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A-/-, CPT2-/-, ACAD9-/- cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-κB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy.


Asunto(s)
Antígeno CD47 , Glioblastoma , Animales , Antígeno CD47/metabolismo , Línea Celular Tumoral , Ácidos Grasos , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Evasión Inmune , Ratones , Fagocitosis
7.
Int J Radiat Biol ; 98(5): 843-854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34606416

RESUMEN

PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.


Asunto(s)
Síndrome de Radiación Aguda , Radiometría , Síndrome de Radiación Aguda/genética , Biomarcadores , Expresión Génica , Humanos , Radiometría/métodos , Estudios Retrospectivos
8.
Radiat Res ; 197(2): 101-112, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673986

RESUMEN

131I-metaiodobenzylguanidine (131I-mIBG) is a targeted radiation therapy developed for the treatment of advanced neuroblastoma. We have previously shown that this patient cohort can be used to predict absorbed dose associated with early 131I exposure, 72 h after treatment. We now expand these studies to identify gene expression differences associated with 131I-mIBG exposure 15 days after treatment. Total RNA from peripheral blood lymphocytes was isolated from 288 whole blood samples representing 59 relapsed or refractory neuroblastoma patients before and after 131I-mIBG treatment. We found that several transcripts predictive of early exposure returned to baseline levels by day 15, however, selected transcripts did not return to baseline. At 72 h, all 17 selected pathway-specific transcripts were differentially expressed. Transcripts CDKN1A (P < 0.000001), FDXR (P < 0.000001), DDB2 (P < 0.000001), and BBC3 (P < 0.000001) showed the highest up-regulation at 72 h after 131I-mIBG exposure, with mean log2 fold changes of 2.55, 2.93, 1.86 and 1.85, respectively. At day 15 after 131I-mIBG, 11 of the 17 selected transcripts were differentially expressed, with XPC, STAT5B, PRKDC, MDM2, POLH, IGF1R, and SGK1 displaying significant up-regulation at 72 h and significant down-regulation at day 15. Interestingly, transcripts FDXR (P = 0.01), DDB2 (P = 0.03), BCL2 (P = 0.003), and SESN1 (P < 0.0003) maintained differential expression 15 days after 131I-mIBG treatment. These results suggest that transcript levels for DNA repair, apoptosis, and ionizing radiation-induced cellular stress are still changing by 15 days after 131I-mIBG treatment. Our studies showcase the use of biodosimetry gene expression panels as predictive biomarkers following early (72 h) and late (15 days) internal 131I exposure. Our findings also demonstrate the utility of our transcript panel to differentiate exposed from non-exposed individuals up to 15 days after exposure from internal 131I.


Asunto(s)
3-Yodobencilguanidina
9.
ACS Omega ; 6(44): 29416-29423, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34778614

RESUMEN

Her2 overexpression is associated with an aggressive form of breast cancer and malignant transformation. We demonstrate in this work that nanolipoprotein particles (NLPs) synthesized in a cell-free manner can be used to transfer Her2 protein into the membrane of nonmalignant cells in 3D culture in a nontoxic and facile manner. With NLP-mediated Her2 protein delivery, we observed an increased probability of nonmalignant cells forming apolar nongrowth-arrested tumor-like structures. The NLP delivery system alone or Her2-NLPs plus the Her2 inhibitor trastuzumab showed no effect on the acinar organization rate, indicating that Her2 signaling is key to this process. Transcriptomics revealed essentially no effect of empty NLPs compared to untreated cells, whereas Her2-NLPs versus either untreated or empty-NLP-treated cells revealed upregulation of several factors associated with breast cancer. Pathway analysis also suggested that known nodes downstream of Her2 were activated in response to Her2-NLP treatment. This demonstrates that Her2 protein delivery with NLPs is sufficient for the malignant transformation of nonmalignant cells. Thus, this system offers a new model for studying cell surface receptor signaling without genomic modification or transformation techniques.

10.
Vaccines (Basel) ; 9(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358171

RESUMEN

Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10-25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.

11.
Nanomedicine ; 24: 102154, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31982617

RESUMEN

In vivo delivery of large RNA molecules has significant implications for novel gene therapy, biologics delivery, and vaccine applications. We have developed cationic nanolipoprotein particles (NLPs) to enhance the complexation and delivery of large self-amplifying mRNAs (replicons) in vivo. NLPs are high-density lipoprotein (HDL) mimetics, comprised of a discoidal lipid bilayer stabilized by apolipoproteins that are readily functionalized to provide a versatile delivery platform. Herein, we systematically screened NLP assembly with a wide range of lipidic and apolipoprotein constituents, using biophysical metrics to identify lead candidates for in vivo RNA delivery. NLPs formulated with cationic lipids successfully complexed with RNA replicons encoding luciferase, provided measurable protection from RNase degradation, and promoted replicon in vivo expression. The NLP complexation of the replicon and in vivo transfection efficiency were further enhanced by modulating the type and percentage of cationic lipid, the ratio of cationic NLP to replicon, and by incorporating additive molecules.


Asunto(s)
Lipoproteínas HDL/metabolismo , ARN Mensajero/metabolismo , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Biomimética , Membrana Dobles de Lípidos/química , Lipoproteínas HDL/química , ARN Mensajero/química , Replicón/genética
12.
Protein Sci ; 27(3): 780-789, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266475

RESUMEN

Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergent removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. In addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Nanopartículas/química , Sistema Libre de Células , Detergentes/química , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X
13.
J Biol Chem ; 292(36): 15121-15132, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739800

RESUMEN

Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Bases , Sistema Libre de Células , Infecciones por Chlamydia/microbiología , Femenino , Ratones , Ratones Endogámicos BALB C
14.
ACS Chem Biol ; 12(8): 2030-2039, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28541657

RESUMEN

The enzymes that determine protein O-GlcNAcylation, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), act on key transcriptional and epigenetic regulators, and both are abundantly expressed in the brain. However, little is known about how alterations in O-GlcNAc cycling affect human embryonic stem cell (hESC) neural differentiation. Here, we studied the effects of perturbing O-GlcNAcylation during neural induction of hESCs using the metabolic inhibitor of OGT, peracetylated 5-thio-N-acetylglucosamine (Ac4-5SGlcNAc). Treatment of hESCs with Ac4-5SGlcNAc during induction limited protein O-GlcNAcylation and also caused a dramatic decrease in global levels of UDP-GlcNAc. Concomitantly, a subpopulation of neural progenitor cells (NPCs) acquired an immature neuronal morphology and expressed early neuronal markers such as ß-III tubulin (TUJ1) and microtubule associated protein 2 (MAP2), phenotypes that took longer to manifest in the absence of OGT inhibition. These data suggest that chemical inhibition of OGT and perturbation of protein O-GlcNAcylation accelerate the differentiation of hESCs along the neuronal lineage, thus providing further insight into the dynamic molecular mechanisms involved in neuronal development.


Asunto(s)
Azidas/farmacología , Diferenciación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hexosaminas/farmacología , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Neuronas/citología , Acilación/efectos de los fármacos , Azidas/química , Línea Celular , Inhibidores Enzimáticos/química , Hexosaminas/química , Humanos , Neuronas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...