Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38375614

RESUMEN

Both internalizing disorders and alcohol use have dramatic, wide-spread implications for global health. Previous work has established common phenotypic comorbidity among these disorders, as well as shared genetic variation underlying them both. We used genomic structural equation modeling to investigate the shared genetics of internalizing, externalizing, and alcohol use traits, as well as to explore whether specific domains of internalizing symptoms mediate the contrasting relationships with problematic alcohol use compared to alcohol consumption. We also examined patterns of genetic correlations between similar traits within additional Finnish and East Asian ancestry groups. When the shared genetic influence of externalizing psychopathology was accounted for, the genetic effect of internalizing traits on alcohol use was reduced, suggesting the important role of common genetic factors underlying multiple psychiatric disorders and their genetic influences on comorbidity of internalizing and alcohol use traits. Individual internalizing domains had contrasting effects on frequency of alcohol consumption, which demonstrate the complex system of pleiotropy that exists, even within similar disorders, and can be missed when evaluating only relationships among formal diagnoses. Future work must consider the broad effects of shared psychopathology along with the fine-scale effects of heterogeneity within disorders to more fully understand the biology underlying complex traits.

2.
Drug Alcohol Depend ; 257: 111126, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387257

RESUMEN

BACKGROUND: The understanding of the molecular genetic contributions to smoking is largely limited to the additive effects of individual single nucleotide polymorphisms (SNPs), but the underlying genetic risk is likely to also include dominance, epistatic, and gene-environment interactions. METHODS: To begin to address this complexity, we attempted to identify genetic interactions between rs16969968, the most replicated SNP associated with smoking quantity, and all SNPs and genes across the genome. RESULTS: Using the UK Biobank European subsample, we found one SNP, rs1892967, and two genes, PCNA and TMEM230, that showed a significant genome-wide interaction with rs16969968 for log10 CPD and raw CPD, respectively, in a sample of 116 442 individuals who self-reported currently or previously smoking. We extended these analyses to individuals of South Asian descent and meta-analyzed the combined sample of 117 212 individuals of European and South Asian ancestry. We replicated the gene findings in a meta-analysis of five Finnish samples (N=40 140): FinHealth, FINRISK, Finnish Twin Cohort, GeneRISK, and Health-2000-2011. CONCLUSIONS: To our knowledge, this represents the first reliable epistatic association between single nucleotide polymorphisms for smoking behaviors and provides a novel direction for possible future functional studies related to this interaction. Furthermore, this work demonstrates the feasibility of these analyses by pooling multiple datasets across various ancestries, which may be applied to other top SNPs for smoking and/or other phenotypes.


Asunto(s)
Enfermedad de Parkinson , Productos de Tabaco , Humanos , Cromosomas Humanos Par 20 , Proteínas de la Membrana/genética , Fumar/genética , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad
3.
mSystems ; 9(1): e0067723, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38095449

RESUMEN

Inflammatory bowel disease (IBD) is characterized by complex etiology and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train and validate models using data on the metagenome, metatranscriptome, virome, and metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting the participants into training and testing groups, we used mixed-effects least absolute shrinkage and selection operator regression to select features for each omic. These features, with demographic covariates, were used to generate separate single-omic prediction scores. All four single-omic scores were then combined into a final regression to assess the relative importance of the individual omics and the predictive benefits when considered together. We identified several species, pathways, and metabolites known to be associated with IBD risk, and we explored the connections between data sets. Individually, metabolomic and viromic scores were more predictive than metagenomics or metatranscriptomics, and when all four scores were combined, we predicted disease diagnosis with a Nagelkerke's R2 of 0.46 and an area under the curve of 0.80 (95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models for complex traits are more predictive than others, that incorporating multiple omic data sets may improve prediction, and that each omic data type provides a combination of unique and redundant information. This modeling framework can be extended to other complex traits and multi-omic data sets.IMPORTANCEComplex traits are characterized by many biological and environmental factors, such that multi-omic data sets are well-positioned to help us understand their underlying etiologies. We applied a prediction framework across multiple omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores from our models highlighted key features and allowed us to compare the relative utility of each omic data set in single-omic versus multi-omic models. Our results emphasized the importance of metabolomics and viromics over metagenomics and metatranscriptomics for predicting IBD status. The greater predictive capability of metabolomics and viromics is likely because these omics serve as markers of lifestyle factors such as diet. This study provides a modeling framework for multi-omic data, and our results show the utility of combining multiple omic data types to disentangle complex disease etiologies and biological signatures.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Metagenómica/métodos , Fenotipo , Factores de Riesgo
4.
Genes Brain Behav ; 22(6): e12851, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37259642

RESUMEN

Anxiety disorders are common and can be debilitating, with effective treatments remaining hampered by an incomplete understanding of the underlying genetic etiology. Improvements have been made in understanding the genetic influences on mouse behavioral models of anxiety, yet it is unclear the extent to which genes identified in these experimental systems contribute to genetic variation in human anxiety phenotypes. Leveraging new and existing large-scale human genome-wide association studies, we tested whether sets of genes previously identified in mouse anxiety-like behavior studies contribute to a range of human anxiety disorders. When tested as individual genes, 13 mouse-identified genes were associated with human anxiety phenotypes, suggesting an overlap of individual genes contributing to both mouse models of anxiety-like behaviors and human anxiety traits. When genes were tested as sets, we did identify 14 significant associations between mouse gene sets and human anxiety, but the majority of gene sets showed no significant association with human anxiety phenotypes. These few significant associations indicate a need to identify and develop more translatable mouse models by identifying sets of genes that "match" between model systems and specific human phenotypes of interest. We suggest that continuing to develop improved behavioral paradigms and finer-scale experimental data, for instance from individual neuronal subtypes or cell-type-specific expression data, is likely to improve our understanding of the genetic etiology and underlying functional changes in anxiety disorders.


Asunto(s)
Trastornos de Ansiedad , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Animales , Trastornos de Ansiedad/genética , Ansiedad/genética , Fenotipo
5.
PLoS Genet ; 19(5): e1010693, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216417

RESUMEN

It remains unknown to what extent gene-gene interactions contribute to complex traits. Here, we introduce a new approach using predicted gene expression to perform exhaustive transcriptome-wide interaction studies (TWISs) for multiple traits across all pairs of genes expressed in several tissue types. Using imputed transcriptomes, we simultaneously reduce the computational challenge and improve interpretability and statistical power. We discover (in the UK Biobank) and replicate (in independent cohorts) several interaction associations, and find several hub genes with numerous interactions. We also demonstrate that TWIS can identify novel associated genes because genes with many or strong interactions have smaller single-locus model effect sizes. Finally, we develop a method to test gene set enrichment of TWIS associations (E-TWIS), finding numerous pathways and networks enriched in interaction associations. Epistasis is may be widespread, and our procedure represents a tractable framework for beginning to explore gene interactions and identify novel genomic targets.


Asunto(s)
Epistasis Genética , Transcriptoma , Transcriptoma/genética , Herencia Multifactorial/genética , Redes Reguladoras de Genes/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos
7.
Genes Brain Behav ; 22(2): e12832, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36514243

RESUMEN

High and Low Activity strains of mice were bidirectionally selected for differences in open-field activity (DeFries et al., 1978, Behavior Genetics, 8: 3-13) and subsequently inbred to use as a genetic model for studying anxiety-like behaviors (Booher et al., 2021, Genes, Brain and Behavior, 20: e12730). Hippocampal RNA-sequencing of the High and Low Activity mice identified 3901 differentially expressed protein-coding genes, with both sex-dependent and sex-independent effects. Functional enrichment analysis (PANTHER) highlighted 15 gene ontology terms, which allowed us to create a narrow list of 264 top candidate genes. Of the top candidate genes, 46 encoded four Complexes (I, II, IV and V) and two electron carriers (cytochrome c and ubiquinone) of the mitochondrial oxidative phosphorylation process. The most striking results were in the female high anxiety, Low Activity mice, where 39/46 genes relating to oxidative phosphorylation were upregulated. In addition, comparison of our top candidate genes with two previously curated High and Low Activity gene lists highlight 24 overlapping genes, where Ndufa13, which encodes the supernumerary subunit A13 of complex I, was the only gene to be included in all three lists. Mitochondrial dysfunction has recently been implicated as both a cause and effect of anxiety-related disorders and thus should be further explored as a possible novel pharmaceutical treatment for anxiety disorders.


Asunto(s)
Ansiedad , Encéfalo , Ratones , Femenino , Animales , Ansiedad/genética , Hipocampo , Análisis de Secuencia de ARN
8.
Nicotine Tob Res ; 25(5): 1030-1038, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36444815

RESUMEN

INTRODUCTION: Smoking behaviors are partly heritable, yet the genetic and environmental mechanisms underlying smoking phenotypes are not fully understood. Developmental nicotine exposure (DNE) is a significant risk factor for smoking and leads to gene expression changes in mouse models; however, it is unknown whether the same genes whose expression is impacted by DNE are also those underlying smoking genetic liability. We examined whether genes whose expression in D1-type striatal medium spiny neurons due to DNE in the mouse are also associated with human smoking behaviors. METHODS: Specifically, we assessed whether human orthologs of mouse-identified genes, either individually or as a set, were genetically associated with five human smoking traits using MAGMA and S-LDSC while implementing a novel expression-based gene-SNP annotation methodology. RESULTS: We found no strong evidence that these genes sets were more strongly associated with smoking behaviors than the rest of the genome, but ten of these individual genes were significantly associated with three of the five human smoking traits examined (p < 2.5e-6). Three of these genes have not been reported previously and were discovered only when implementing the expression-based annotation. CONCLUSIONS: These results suggest the genes whose expression is impacted by DNE in mice are largely distinct from those contributing to smoking genetic liability in humans. However, examining a single mouse neuronal cell type may be too fine a resolution for comparison, suggesting that experimental manipulation of nicotine consumption, reward, or withdrawal in mice may better capture genes related to the complex genetics of human tobacco use. IMPLICATIONS: Genes whose expression is impacted by DNE in mouse D1-type striatal medium spiny neurons were not found to be, as a whole, more strongly associated with human smoking behaviors than the rest of the genome, though ten individual mouse-identified genes were associated with human smoking traits. This suggests little overlap between the genetic mechanisms impacted by DNE and those influencing heritable liability to smoking phenotypes in humans. Further research is warranted to characterize how developmental nicotine exposure paradigms in mice can be translated to understand nicotine use in humans and their heritable effects on smoking.


Asunto(s)
Nicotina , Fumar , Humanos , Animales , Ratones , Fumar/genética , Fenotipo , Fumar Tabaco , Modelos Animales de Enfermedad
9.
Biol Psychiatry ; 93(1): 59-70, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150907

RESUMEN

BACKGROUND: Deficits in executive functions (EFs), cognitive processes that control goal-directed behaviors, are associated with psychopathology and neurologic disorders. Little is known about the molecular bases of individual differences in EFs. Prior candidate gene studies have been underpowered in their search for dopaminergic processes involved in cognitive functioning, and existing genome-wide association studies of EFs used small sample sizes and/or focused on individual tasks that are imprecise measures of EFs. METHODS: We conducted a genome-wide association study of a common EF (cEF) factor score based on multiple tasks in the UK Biobank (n = 427,037 individuals of European descent). RESULTS: We found 129 independent genome-wide significant lead variants in 112 distinct loci. cEF was associated with fast synaptic transmission processes (synaptic, potassium channel, and GABA [gamma-aminobutyric acid] pathways) in gene-based analyses. cEF was genetically correlated with measures of intelligence (IQ) and cognitive processing speed, but cEF and IQ showed differential genetic associations with psychiatric disorders and educational attainment. CONCLUSIONS: Results suggest that cEF is a genetically distinct cognitive construct that is particularly relevant to understanding the genetic variance in psychiatric disorders.


Asunto(s)
Función Ejecutiva , Trastornos Mentales , Humanos , Estudio de Asociación del Genoma Completo , Inteligencia/genética , Trastornos Mentales/genética , Cognición
10.
Eur J Hum Genet ; 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446896

RESUMEN

Complex traits show clear patterns of tissue-specific expression influenced by single nucleotide polymorphisms (SNPs), yet current strategies aggregate SNP effects to genes by employing simple physical proximity-based windows. Here, we examined whether incorporating SNPs with effects on tissue-specific cis-expression would improve our ability to detect trait-relevant tissues across 31 complex traits using stratified linkage disequilibrium score regression (S-LDSC). We found that a physical proximity annotation produced more significant tissue enrichments and larger S-LDSC regression coefficients, as compared to an expression-based annotation. Furthermore, we showed that our expression-based annotation did not outperform an annotation strategy in which an equal number of randomly chosen SNPs were annotated to genes within the same genomic window, suggesting extensive redundancy among SNP effect estimates due to linkage disequilibrium. That said, current sample sizes limit estimation of cis-genetic SNP effects; therefore, we recommend reexamination of the expression-based annotation when larger tissue-specific expression datasets become available. To examine the influence of sample size, we used a large whole blood eQTL reference panel (N = 31,684) applying a similar expression-based annotation strategy. We found that significant cis-expression QTLs in whole blood did not outperform the physical proximity annotation when estimating tissue-specific SNP heritability enrichment for either high- or low-density lipoprotein phenotypes but performed similarly for inflammatory bowel disease. Finally, we report new and updated tissue enrichment estimates across 31 complex traits, such as significant heritability enrichment of the frontal cortex for cognitive performance, educational attainment, and intelligence, providing further evidence of this structure's importance in higher cognitive function.

11.
Nat Genet ; 54(5): 581-592, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35534559

RESUMEN

Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Análisis de la Aleatorización Mendeliana , Herencia Multifactorial/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
12.
J Am Acad Child Adolesc Psychiatry ; 61(7): 934-945, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35378236

RESUMEN

OBJECTIVE: To investigate the genetic architecture of internalizing symptoms in childhood and adolescence. METHOD: In 22 cohorts, multiple univariate genome-wide association studies (GWASs) were performed using repeated assessments of internalizing symptoms, in a total of 64,561 children and adolescents between 3 and 18 years of age. Results were aggregated in meta-analyses that accounted for sample overlap, first using all available data, and then using subsets of measurements grouped by rater, age, and instrument. RESULTS: The meta-analysis of overall internalizing symptoms (INToverall) detected no genome-wide significant hits and showed low single nucleotide polymorphism (SNP) heritability (1.66%, 95% CI = 0.84-2.48%, neffective = 132,260). Stratified analyses indicated rater-based heterogeneity in genetic effects, with self-reported internalizing symptoms showing the highest heritability (5.63%, 95% CI = 3.08%-8.18%). The contribution of additive genetic effects on internalizing symptoms appeared to be stable over age, with overlapping estimates of SNP heritability from early childhood to adolescence. Genetic correlations were observed with adult anxiety, depression, and the well-being spectrum (|rg| > 0.70), as well as with insomnia, loneliness, attention-deficit/hyperactivity disorder, autism, and childhood aggression (range |rg| = 0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. CONCLUSION: Genetic correlations indicate that childhood and adolescent internalizing symptoms share substantial genetic vulnerabilities with adult internalizing disorders and other childhood psychiatric traits, which could partially explain both the persistence of internalizing symptoms over time and the high comorbidity among childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Autístico , Estudio de Asociación del Genoma Completo , Trastornos del Inicio y del Mantenimiento del Sueño , Adolescente , Adulto , Agresión , Ansiedad/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Autístico/genética , Trastorno Bipolar , Niño , Preescolar , Depresión/genética , Humanos , Soledad , Polimorfismo de Nucleótido Simple , Esquizofrenia , Trastornos del Inicio y del Mantenimiento del Sueño/genética
13.
Am J Med Genet B Neuropsychiatr Genet ; 186(6): 353-366, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34569141

RESUMEN

Genetic correlations suggest that the genetic relationship of alcohol use with internalizing psychopathology depends on the measure of alcohol use. Problematic alcohol use (PAU) is positively genetically correlated with internalizing psychopathology, whereas alcohol consumption ranges from not significantly correlated to moderately negatively correlated with internalizing psychopathology. To explore these different genetic relationships of internalizing psychopathology with alcohol use, we performed a multivariate genome-wide association study of four correlated factors (internalizing psychopathology, PAU, quantity of alcohol consumption, and frequency of alcohol consumption) and then assessed genome-wide and local genetic covariance between these factors. We identified 14 significant regions of local, largely positive, genetic covariance between PAU and internalizing psychopathology and 12 regions of significant local genetic covariance (including both positive and negative genetic covariance) between consumption factors and internalizing psychopathology. Partitioned genetic covariance among functional annotations suggested that brain tissues contribute significantly to positive genetic covariance between internalizing psychopathology and PAU but not to the genetic covariance between internalizing psychopathology and quantity or frequency of alcohol consumption. We hypothesize that genome-wide genetic correlations between alcohol use and psychiatric traits may not capture the more complex shared or divergent genetic architectures at the locus or tissue specific level. This study highlights the complexity of genetic architectures of alcohol use and internalizing psychopathology, and the differing shared genetics of internalizing disorders with PAU compared to consumption.


Asunto(s)
Alcoholismo , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Humanos , Psicopatología
14.
Addiction ; 116(9): 2498-2508, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33620764

RESUMEN

BACKGROUND AND AIMS: Although genome-wide association studies have identified many loci that influence smoking behaviors, much of the genetic variance remains unexplained. We characterized the genetic architecture of four smoking behaviors using single nucleotide polymorphism (SNP) heritability (h2SNP ). This is an estimate of narrow-sense heritability specifically estimating the proportion of phenotypic variation due to causal variants (CVs) tagged by SNPs. DESIGN: Partitioned h2SNP analysis of smoking behavior traits. SETTING: UK Biobank. PARTICIPANTS: UK Biobank participants of European ancestry. The number of participants varied depending on the trait, from 54 792 to 323 068. MEASUREMENTS: Smoking initiation, age of initiation, cigarettes per day (CPD; count, log-transformed, binned and dichotomized into heavy versus light) and smoking cessation with imputed genome-wide SNPs. FINDINGS: We estimated that, in aggregate, approximately 18% of the phenotypic variance in smoking initiation was captured by imputed SNPs [h2SNP = 0.18, standard error (SE) = 0.01] and 12% [SE = 0.02] for smoking cessation, both of which were more than twice the previously reported estimates. Estimated age of initiation (h2SNP  = 0.05, SE = 0.01) and binned CPD (h2SNP  = 0.1, SE = 0.01) were substantially below published twin-based h2 of 50%. CPD encoding influenced estimates, with dichotomized CPD h2SNP  = 0.28. There was no evidence of dominance genetic variance for any trait. CONCLUSION: A biobank study of smoking behavior traits suggested that the phenotypic variance explained by SNPs of smoking initiation, age of initiation, cigarettes per day and smoking cessation is modest overall.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Fumar/genética
15.
Behav Genet ; 51(1): 68-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32939625

RESUMEN

We conducted whole-genome sequencing of four inbred mouse strains initially selected for high (H1, H2) or low (L1, L2) open-field activity (OFA), and then examined strain distribution patterns for all DNA variants that differed between their BALB/cJ and C57BL/6J parental strains. Next, we assessed genome-wide sharing (3,678,826 variants) both between and within the High and Low Activity strains. Results suggested that about 10% of these DNA variants may be associated with OFA, and clearly demonstrated its polygenic nature. Finally, we conducted bioinformatic analyses of functional genomics data from mouse, rat, and human to refine previously identified quantitative trait loci (QTL) for anxiety-related measures. This combination of sequence analysis and genomic-data integration facilitated refinement of previously intractable QTL findings, and identified possible genes for functional follow-up studies.


Asunto(s)
Ansiedad/genética , Ratones Endogámicos/genética , Prueba de Campo Abierto/fisiología , Animales , Trastornos de Ansiedad/genética , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Modelos Animales de Enfermedad , Genómica/métodos , Genotipo , Humanos , Ratones , Ratones Endogámicos BALB C/genética , Ratones Endogámicos C57BL/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Ratas , Secuenciación del Exoma/métodos
16.
Nicotine Tob Res ; 23(6): 1055-1063, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33165565

RESUMEN

INTRODUCTION: Tobacco smoking is the leading cause of preventable death globally. Smoking quantity, measured in cigarettes per day, is influenced both by the age of onset of regular smoking (AOS) and by genetic factors, including a strong effect of the nonsynonymous single-nucleotide polymorphism rs16969968. A previous study by Hartz et al. reported an interaction between these two factors, whereby rs16969968 risk allele carriers who started smoking earlier showed increased risk for heavy smoking compared with those who started later. This finding has yet to be replicated in a large, independent sample. METHODS: We performed a preregistered, direct replication attempt of the rs16969968 × AOS interaction on smoking quantity in 128 383 unrelated individuals from the UK Biobank, meta-analyzed across ancestry groups. We fit statistical association models mirroring the original publication as well as formal interaction tests on multiple phenotypic and analytical scales. RESULTS: We replicated the main effects of rs16969968 and AOS on cigarettes per day but failed to replicate the interaction using previous methods. Nominal significance of the rs16969968 × AOS interaction term depended strongly on the scale of analysis and the particular phenotype, as did associations stratified by early/late AOS. No interaction tests passed genome-wide correction (α = 5e-8), and all estimated interaction effect sizes were much smaller in magnitude than previous estimates. CONCLUSIONS: We failed to replicate the strong rs16969968 × AOS interaction effect previously reported. If such gene-moderator interactions influence complex traits, they likely depend on scale of measurement, and current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. IMPLICATIONS: We failed to replicate the strong rs16969968 × AOS interaction effect on smoking quantity previously reported. If such gene-moderator interactions influence complex traits, current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. Furthermore, many potential interaction effects are likely to depend on the scale of measurement employed.


Asunto(s)
Fumar , Edad de Inicio , Predisposición Genética a la Enfermedad , Humanos , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Receptores Nicotínicos/genética , Fumar/genética , Fumar Tabaco
17.
Ecol Appl ; 31(3): e02254, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33159398

RESUMEN

Ecological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species-level ENM (3-14% increase in AUC; 1-23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly "adaptive management" approach to support conservation genetic management of species facing global change.


Asunto(s)
Cambio Climático , Ecosistema , Populus/genética , Adaptación Fisiológica , Canadá , México
18.
Nicotine Tob Res ; 22(8): 1310-1315, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31930296

RESUMEN

INTRODUCTION: Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine. METHODS: We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics. We assessed smoking initiation, cigarettes per day, smoking cessation, and age of smoking initiation. RESULTS: Individual genes within each gene set were significantly associated with smoking behaviors. Both sets of genes were significantly associated with cigarettes per day, smoking initiation, and smoking cessation. Age of initiation was only associated with the Smokescreen gene set. Although both sets of genes were enriched for trait heritability, each accounts for only a small proportion of the single nucleotide polymorphism-based heritability (2%-12%). CONCLUSIONS: These two gene sets are associated with smoking behaviors, but collectively account for a limited amount of the genetic and phenotypic variation of these complex traits, consistent with high polygenicity. IMPLICATIONS: We evaluated evidence for the association and heritable contribution of expert-curated and bioinformatically identified sets of genes related to smoking. Although they impact smoking behaviors, these specifically targeted genes do not account for much of the heritability in smoking and will be of limited use for predictive purposes. Advanced genome-wide approaches and integration of other 'omics data will be needed to fully account for the genetic variation in smoking phenotypes.


Asunto(s)
Conducta Adictiva/genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Receptores Nicotínicos/genética , Fumar/genética , Edad de Inicio , Conducta Adictiva/epidemiología , Conducta Adictiva/psicología , Colorado/epidemiología , Humanos , Fenotipo , Fumar/epidemiología , Fumar/psicología
20.
New Phytol ; 223(1): 293-309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843213

RESUMEN

Genome-wide association studies (GWAS) have great promise for identifying the loci that contribute to adaptive variation, but the complex genetic architecture of many quantitative traits presents a substantial challenge. We measured 14 morphological and physiological traits and identified single nucleotide polymorphism (SNP)-phenotype associations in a Populus trichocarpa population distributed from California, USA to British Columbia, Canada. We used whole-genome resequencing data of 882 trees with more than 6.78 million SNPs, coupled with multitrait association to detect polymorphisms with potentially pleiotropic effects. Candidate genes were validated with functional data. Broad-sense heritability (H2 ) ranged from 0.30 to 0.56 for morphological traits and 0.08 to 0.36 for physiological traits. In total, 4 and 20 gene models were detected using the single-trait and multitrait association methods, respectively. Several of these associations were corroborated by additional lines of evidence, including co-expression networks, metabolite analyses, and direct confirmation of gene function through RNAi. Multitrait association identified many more significant associations than single-trait association, potentially revealing pleiotropic effects of individual genes. This approach can be particularly useful for challenging physiological traits such as water-use efficiency or complex traits such as leaf morphology, for which we were able to identify credible candidate genes by combining multitrait association with gene co-expression and co-methylation data.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Populus/genética , Populus/fisiología , Carácter Cuantitativo Heredable , Regulación hacia Abajo , Redes Reguladoras de Genes , Genes de Plantas , Genotipo , Geografía , Patrón de Herencia/genética , Análisis Multivariante , Estomas de Plantas/fisiología , Populus/anatomía & histología , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...