Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915486

RESUMEN

PARP1 (ARTD1) and Tankyrases (TNKS1/TNKS2; PARP5a/5b) are poly-ADP-ribose polymerases (PARPs) with catalytic and non-catalytic functions that regulate both the genome and proteome during zygotic genome activation (ZGA), totipotent, and pluripotent embryonic stages. Here, we show that primed, conventional human pluripotent stem cells (hPSC) cultured continuously under non-specific TNKS1/TNKS2/PARP1-inhibited chemical naive reversion conditions underwent epigenetic reprogramming to clonal blastomere-like stem cells. TIRN stem cells concurrently expressed hundreds of gene targets of the ZGA-priming pioneer factor DUX4, as well as a panoply of four-cell (4C)-specific (e.g., TPRXL, HOX clusters), eight-cell (8C)-specific (e.g., DUXA, GSC, GATA6), primitive endoderm-specific (e.g., GATA4, SOX17), trophectoderm-specific (e.g., CDX2, TFAP2C), and naive epiblast-specific (e.g., DNMT3L, NANOG, POU5F1(OCT4)) factors; all in a hybrid, combinatorial single-cell manner. Mapping of proteomic and single-cell expressions of TIRN cells against human preimplantation embryo references identified them as relatively homogenous 4C-8C stage populations. Injection of TIRN cells into murine 8C-16C-staged embryos resulted in efficient totipotent-like single cell contributions of human cells to both extra-embryonic (trophectoderm, placenta) and embryonic (neural, fetal liver, hematopoietic) lineages in human-murine blastocyst and fetal chimeras. Pairing of proteome with ubiquitinome analyses of TIRN cells revealed a global shutdown of ADP-ribosylation, and a perturbed TNKS/PARP1 equilibrium which not only impacted the protein levels of hundreds of TNKS/PARP1 substrates via a rewiring of the ubiquitin-proteosome system (UPS), but also de-repressed expression of hundreds of developmental genes associated with PARP1 suppression. ChIP-Seq analysis of core NANOG-SOX2-OCT4 (NSO) pluripotency factors in TIRN cells identified reprogrammed DUX4-accessible distal and cis-regulatory enhancer regions that were co-bound by PARP1 (NSOP). These NSOP enhancer regions possessed co-binding motifs for hundreds of the same ZGA-associated, embryonic, and extraembryonic lineage-specifying pioneer factors (e.g., HOX, FOX, GATA, SOX, TBX, CDX families) that were concurrently co-expressed in TIRN cells; suggesting that PARP1 and DUX4 cooperate with NSO pluripotency core factors to regulate the epigenetic plasticity of a human totipotency program. These findings provide the first demonstration that global, proteome-wide perturbations of post-translational modifications (i.e., ADP-ribosylation, ubiquitination) can regulate epigenetic reprogramming during human embryogenesis. Totipotent TIRN stem cells will provide a valuable cell culture model for studying the proteogenomic regulation of lineage specification from human blastomere stages and may facilitate the efficient generation of human organs in interspecies chimeras.

2.
Nat Commun ; 11(1): 1195, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139672

RESUMEN

Here, we report that the functionality of vascular progenitors (VP) generated from normal and disease-primed conventional human induced pluripotent stem cells (hiPSC) can be significantly improved by reversion to a tankyrase inhibitor-regulated human naïve epiblast-like pluripotent state. Naïve diabetic vascular progenitors (N-DVP) differentiated from patient-specific naïve diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality, maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than isogenic diabetic vascular progenitors (DVP). These findings suggest that reprogramming to a stable naïve human pluripotent stem cell state may effectively erase dysfunctional epigenetic donor cell memory or disease-associated aberrations in patient-specific hiPSC. More broadly, tankyrase inhibitor-regulated naïve hiPSC (N-hiPSC) represent a class of human stem cells with high epigenetic plasticity, improved multi-lineage functionality, and potentially high impact for regenerative medicine.


Asunto(s)
Vasos Sanguíneos/patología , Diabetes Mellitus/patología , Células Madre Pluripotentes Inducidas/patología , Isquemia/terapia , Retina/patología , Células Madre/patología , Tanquirasas/antagonistas & inhibidores , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Daño del ADN , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Código de Histonas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Isquemia/patología , Ratones , Organoides/efectos de los fármacos , Organoides/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Regiones Promotoras Genéticas/genética , Células Madre/efectos de los fármacos , Células Madre/ultraestructura , Tanquirasas/metabolismo , Teratoma/patología , Transcripción Genética/efectos de los fármacos
3.
J Vis Exp ; (136)2018 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-29939183

RESUMEN

Naïve human pluripotent stem cells (N-hPSC) with improved functionality may have a wide impact in regenerative medicine. The goal of this protocol is to efficiently revert lineage-primed, conventional human pluripotent stem cells (hPSC) maintained on either feeder-free or feeder-dependent conditions to a naïve-like pluripotency with improved functionality. This chemical naïve reversion method employs the classical leukemia inhibitory factor (LIF), GSK3ß, and MEK/ERK inhibition cocktail (LIF-2i), supplemented with only a tankyrase inhibitor XAV939 (LIF-3i). LIF-3i reverts conventional hPSC to a stable pluripotent state adopting biochemical, transcriptional, and epigenetic features of the human pre-implantation epiblast. This LIF-3i method requires minimal cell culture manipulation and is highly reproducible in a broad repertoire of human embryonic stem cell (hESC) and transgene-free human induced pluripotent stem cell (hiPSC) lines. The LIF-3i method does not require a re-priming step prior to the differentiation; N-hPSC can be differentiated directly with extremely high efficiencies and maintain karyotypic and epigenomic stabilities (including at imprinted loci). To increase the universality of the method, conventional hPSC are first cultured in the LIF-3i cocktail supplemented with two additional small molecules that potentiate protein kinase A (forskolin) and sonic hedgehog (sHH) (purmorphamine) signaling (LIF-5i). This brief LIF-5i adaptation step significantly enhances the initial clonal expansion of conventional hPSC and permits them to be subsequently naïve-reverted with LIF-3i alone in bulk quantities, thus obviating the need for picking/subcloning rare N-hPSC colonies later. LIF-5i-stabilized hPSCs are subsequently maintained in LIF-3i alone without the need of anti-apoptotic molecules. Most importantly, LIF-3i reversion markedly improves the functional pluripotency of a broad repertoire of conventional hPSC by decreasing their lineage-primed gene expression and erasing the interline variability of directed differentiation commonly observed amongst independent hPSC lines. Representative characterizations of LIF-3i-reverted N-hPSC are provided, and experimental strategies for functional comparisons of isogenic hPSC in lineage-primed vs. naïve-like states are outlined.


Asunto(s)
Estratos Germinativos/metabolismo , Células Madre Pluripotentes/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Células Madre Pluripotentes/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...