Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(8): e72722, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991146

RESUMEN

Cerebral malaria is the most severe complication of Plasmodium falciparum infection, and a leading cause of death in children under the age of five in malaria-endemic areas. We report high therapeutic efficacy of a novel formulation of liposome-encapsulated water-soluble glucocorticoid prodrugs, and in particular ß-methasone hemisuccinate (BMS), for treatment of experimental cerebral malaria (ECM), using the murine P. berghei ANKA model. BMS is a novel derivative of the potent steroid ß-methasone, and was specially synthesized to enable remote loading into nano-sterically stabilized liposomes (nSSL), to form nSSL-BMS. The novel nano-drug, composed of nSSL remote loaded with BMS, dramatically improves drug efficacy and abolishes the high toxicity seen upon administration of free BMS. nSSL-BMS reduces ECM rates in a dose-dependent manner and creates a survival time-window, enabling administration of an antiplasmodial drug, such as artemisone. Administration of artemisone after treatment with the nSSL-BMS results in complete cure. Treatment with BMS leads to lower levels of cerebral inflammation, demonstrated by changes in cytokines, chemokines, and cell markers, as well as diminished hemorrhage and edema, correlating with reduced clinical score. Administration of the liposomal formulation results in accumulation of BMS in the brains of sick mice but not of healthy mice. This steroidal nano-drug effectively eliminates the adverse effects of the cerebral syndrome even when the treatment is started at late stages of disease, in which disruption of the blood-brain barrier has occurred and mice show clear signs of neurological impairment. Overall, sequential treatment with nSSL-BMS and artemisone may be an efficacious and well-tolerated therapy for prevention of CM, elimination of parasites, and prevention of long-term cognitive damage.


Asunto(s)
Betametasona/uso terapéutico , Modelos Animales de Enfermedad , Liposomas , Malaria Cerebral/tratamiento farmacológico , Nanopartículas , Enfermedad Aguda , Animales , Secuencia de Bases , Betametasona/administración & dosificación , Cartilla de ADN , Malaria Cerebral/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Plasmodium berghei/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Chem Phys Lipids ; 165(4): 414-23, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22715503

RESUMEN

Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.


Asunto(s)
ADN/administración & dosificación , Ácidos Grasos Monoinsaturados/química , Liposomas/química , Plásmidos/administración & dosificación , Compuestos de Amonio Cuaternario/química , Colesterol/química , ADN/química , Conformación de Ácido Nucleico , Fosfatidiletanolaminas/química , Plásmidos/química
3.
J Control Release ; 160(2): 164-71, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22266050

RESUMEN

ß-casein is an amphiphilic protein that self-organizes into well-defined core-shell micelles. We developed these micelles as efficient nanocarriers for oral drug delivery. Our model drug is celecoxib, an anti-inflammatory hydrophobic drug utilized for treatment of rheumatoid arthritis and osteoarthritis, now also evaluated as a potent anticancer drug. This system is unique as it enables encapsulation loads >100-fold higher than other ß-casein/drug formulations, and does not require additives as do other formulations that have high loadings. This is combined with the ability to lyophilize the formulation without a cryoprotectant, long-term physical and chemical stability of the resulting powder, and fully reversible reconstitution of the structures by rehydration. The dry dosage form, in which >95% of the drug is encapsulated, meets the daily dose. Cryo-TEM and DLS prove that drug encapsulation results in micelle swelling, and X-ray diffraction shows that the encapsulated drug is amorphous. Altogether, our novel dosage form is highly advantageous for oral administration.


Asunto(s)
Caseínas/química , Portadores de Fármacos/química , Diseño de Fármacos , Nanopartículas/química , Tensoactivos/química , Administración Oral , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Celecoxib , Química Farmacéutica , Microscopía por Crioelectrón , Composición de Medicamentos , Liofilización , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Microscopía Electrónica de Transmisión , Estructura Molecular , Pirazoles/administración & dosificación , Pirazoles/química , Solubilidad , Sulfonamidas/administración & dosificación , Sulfonamidas/química , Propiedades de Superficie , Difracción de Rayos X
4.
Arthritis Rheum ; 58(1): 119-29, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18163482

RESUMEN

OBJECTIVE: The use of glucocorticoids (GCs) in rheumatoid arthritis is limited by side effects related to unfavorable pharmacokinetics and biodistribution. Liposomal GC formulations have been studied since the 1970s in an attempt to overcome this obstacle, but none has entered clinical use. We undertook this study to determine whether a novel approach could overcome the limitations that have thus far prevented the clinical use of these formulations: low drug:lipid ratio, low encapsulation efficiency, and lack of controlled release. METHODS: We used approximately 80-nm sterically stabilized (pegylated) nanoliposomes (NSSLs), which were remote-loaded with an amphipathic weak acid GC (such as methyl prednisolone hemisuccinate) utilizing an intraliposome (aqueous compartment)-high/extraliposome (bulk medium)-low transmembrane calcium acetate gradient. This unique method actually "traps" the GC in the liposomal aqueous phase as a calcium-GC precipitate. RESULTS: Our liposome formulation exhibited high encapsulation efficiency (94%) and a high drug:lipid mole ratio (0.41) and demonstrated controlled release of the encapsulated GC during systemic circulation and in inflamed paws in rats with adjuvant-induced arthritis. In addition, both in arthritic rats and in a Beagle dog, we showed the pharmacokinetic advantage of using liposomes as GC carriers. Finally, we demonstrated the superior therapeutic efficacy of our liposome formulation over that of free GCs in arthritic rats, both in early and in peak disease stages. CONCLUSION: Amphipathic weak acid GCs remote-loaded into approximately 80-nm NSSLs overcome past limitations of liposomal GC formulations. The unique loading method, which also leads to controlled release, improves the therapeutic effect both systemically and locally. Such a development has great potential for improving GC therapy.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Glucocorticoides/farmacología , Liposomas/farmacología , Nanoestructuras , Profármacos/farmacología , Ácidos , Animales , Preparaciones de Acción Retardada , Perros , Sistemas de Liberación de Medicamentos , Femenino , Glucocorticoides/farmacocinética , Glucocorticoides/toxicidad , Profármacos/farmacocinética , Profármacos/toxicidad , Ratas , Ratas Endogámicas Lew , Distribución Tisular
6.
Vaccine ; 21(23): 3169-78, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12804845
7.
J Med Virol ; 69(4): 560-7, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12601765

RESUMEN

Influenza and its complications account for substantial morbidity and mortality among young adults and especially among the elderly. In young adults, immunization provides 70-90% protection, while among the elderly the vaccine may be only 30-40% effective; hence the need for new, more immunogenic vaccines. We compared the safety and immunogenicity of a novel IL-2-supplemented liposomal influenza vaccine (designated INFLUSOME-VAC) with that of a commercial subunit vaccine and a commercial split virion vaccine in young adults (mean age 28 years) in the winter of 1999-2000. Seventy-three healthy young adults were randomly assigned to be vaccinated intramuscularly with the following: a commercial subunit vaccine (n = 17, group A), INFLUSOME-VAC (n = 36, group B), and a commercial split virion vaccine (n = 20, group C). The three vaccines contained equal amounts of hemagglutinin (approximately 15 microg each) from the strains A/Sydney (H3N2), A/Beijing (H1N1), and B/Yamanashi. INFLUSOME-VAC induced higher geometric mean HI titers and higher-fold increases in HI titers against all three strains, compared with the two commercial vaccines. In addition, seroconversion rates for the A/Sydney and B/Yamanashi strains were significantly higher (P < 0.05) compared with the split virion vaccine, and significantly higher for the three strains compared with the subunit vaccine (69-97% vs 35-65%, P < or = 0.02). Moreover, the anti-neuraminidase response was significantly greater (P = 0.05) in group B vs group A. INFLUSOME-VAC caused mild local pain at the injection site in a significantly higher proportion of the vaccinees (83%). Thus, INFLUSOME-VAC is an immunogenic and safe vaccine in young adults.


Asunto(s)
Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza , Gripe Humana/prevención & control , Adolescente , Adulto , Animales , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Interleucina-2/genética , Interleucina-2/inmunología , Liposomas/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/inmunología , Proteínas Recombinantes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...