Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Physiol ; 10(1): coac002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492414

RESUMEN

Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt ), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt ) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea.

2.
Ecology ; 102(12): e03536, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34514590

RESUMEN

Herbivory and nutrient availability are fundamental drivers of benthic community succession in shallow marine systems, including coral reefs. Despite the importance of early community succession for coral recruitment and recovery, studies characterizing the impact of top-down and bottom-up drivers on micro- and macrobenthic communities at scales relevant to coral recruitment are lacking. Here, a combination of tank and field experiments were used to assess the effects of herbivore exclusion and nutrient enrichment on micro- to macrobenthic community succession and subsequent coral recruitment success. Herbivore exclusion had the strongest effect on micro- and macrobenthic community succession, including a community shift toward copiotrophic and potentially opportunistic/pathogenic microorganisms, an increased cover of turf and macroalgae, and decreased cover of crustose coralline algae. Yet, when corals settled prior to the development of a macrobenthic community, rates of post-settlement survival increased when herbivores were excluded, benefiting from the predation refugia provided by cages during their vulnerable early post-settlement stage. Interestingly, survival on open tiles was negatively correlated with the relative abundance of the bacterial order Rhodobacterales, an opportunistic microbial group previously associated with stressed and diseased corals. Development of micro- and macrobenthic communities in the absence of herbivory, however, led to reduced coral settlement. In turn, there were no differences in post-settlement survival between open and caged treatments for corals settled on tiles with established benthic communities. As a result, open tiles experienced marginally higher recruitment rates, driven primarily by the higher initial number of settlers on open tiles compared to caged tiles. Overall, we reveal that the primary interaction driving coral recruitment is the positive effect of herbivory in creating crustose coralline algae (CCA)-dominated habitats, free of fleshy algae and associated opportunistic microbes, to enhance coral settlement. The negative direct and indirect impact of fish predation on newly settled corals was outweighed by the positive effect of herbivory on the initial rate of coral settlement. In turn, the addition of nutrients further altered benthic community succession in the absence of herbivory, reducing coral post-settlement survival. However, the overall impact of nutrients on coral recruitment dynamics was minor relative to herbivory.


Asunto(s)
Antozoos , Animales , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras , Nutrientes
3.
PeerJ ; 9: e11608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306826

RESUMEN

Ocean acidification (OA) is negatively affecting calcification in a wide variety of marine organisms. These effects are acute for many tropical scleractinian corals under short-term experimental conditions, but it is unclear how these effects interact with ecological processes, such as competition for space, to impact coral communities over multiple years. This study sought to test the use of individual-based models (IBMs) as a tool to scale up the effects of OA recorded in short-term studies to community-scale impacts, combining data from field surveys and mesocosm experiments to parameterize an IBM of coral community recovery on the fore reef of Moorea, French Polynesia. Focusing on the dominant coral genera from the fore reef, Pocillopora, Acropora, Montipora and Porites, model efficacy first was evaluated through the comparison of simulated and empirical dynamics from 2010-2016, when the reef was recovering from sequential acute disturbances (a crown-of-thorns seastar outbreak followed by a cyclone) that reduced coral cover to ~0% by 2010. The model then was used to evaluate how the effects of OA (1,100-1,200 µatm pCO2) on coral growth and competition among corals affected recovery rates (as assessed by changes in % cover y-1) of each coral population between 2010-2016. The model indicated that recovery rates for the fore reef community was halved by OA over 7 years, with cover increasing at 11% y-1 under ambient conditions and 4.8% y-1 under OA conditions. However, when OA was implemented to affect coral growth and not competition among corals, coral community recovery increased to 7.2% y-1, highlighting mechanisms other than growth suppression (i.e., competition), through which OA can impact recovery. Our study reveals the potential for IBMs to assess the impacts of OA on coral communities at temporal and spatial scales beyond the capabilities of experimental studies, but this potential will not be realized unless empirical analyses address a wider variety of response variables representing ecological, physiological and functional domains.

4.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941698

RESUMEN

Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were detected by complementary DNA (cDNA)-based 16S ribosomal RNA (rRNA) gene sequencing. In all experiments up to 32 °C, RNA-Seq revealed fast and pervasive changes in gene expression, primarily in the coral host, followed by a return to baseline gene expression for the majority of coral (>94%) and algal (>71%) genes during recovery. At 34.5 °C, large differences in gene expression were observed with minimal recovery, high coral mortality, and a microbiome dominated by opportunistic bacteria (including Vibrio species), indicating that a lethal temperature threshold had been crossed. Our results show that the S. pistillata holobiont can mount a rapid and pervasive gene expression response contingent on the amplitude and duration of the thermal stress. We propose that the transcriptomic resilience and transcriptomic acclimation observed are key to the extraordinary thermal tolerance of this holobiont and, by inference, of other northern Red Sea coral holobionts, up to seawater temperatures of at least 32 °C, that is, 5 °C above their current maximum monthly mean.


Asunto(s)
Aclimatación/genética , Antozoos/genética , Arrecifes de Coral , Respuesta al Choque Térmico/genética , Microbiota/genética , Transcriptoma/genética , Animales , Antozoos/clasificación , Antozoos/microbiología , Bacterias/clasificación , Bacterias/genética , Calor , Océano Índico , Microbiota/fisiología , ARN Ribosómico 16S/genética , RNA-Seq/métodos , Simbiosis/genética , Factores de Tiempo
5.
R Soc Open Sci ; 4(5): 170082, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28573015

RESUMEN

Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions.

6.
J Exp Biol ; 220(Pt 6): 1097-1105, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087656

RESUMEN

In densely populated communities, such as coral reefs, organisms can modify the physical and chemical environment for neighbouring individuals. We tested the hypothesis that colony density (12 colonies each placed ∼0.5 cm apart versus ∼8 cm apart) can modulate the physiological response (measured through rates of calcification, photosynthesis and respiration in the light and dark) of the coral Pocillopora verrucosa to partial pressure of CO2 (PCO2 ) treatments (∼400 µatm and ∼1200 µatm) by altering the seawater flow regimes experienced by colonies placed in aggregations within a flume at a single flow speed. While light calcification decreased 20% under elevated versus ambient PCO2  for colonies in low-density aggregations, light calcification of high-density aggregations increased 23% at elevated versus ambient PCO2 As a result, densely aggregated corals maintained calcification rates over 24 h that were comparable to those maintained under ambient PCO2 , despite a 45% decrease in dark calcification at elevated versus ambient PCO2 Additionally, densely aggregated corals experienced reduced flow speeds and higher seawater retention times between colonies owing to the formation of eddies. These results support recent indications that neighbouring organisms, such as the conspecific coral colonies in the present example, can create small-scale refugia from the negative effects of ocean acidification.


Asunto(s)
Antozoos/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Animales , Calcificación Fisiológica , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Fotosíntesis , Agua de Mar/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...