Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Br J Clin Pharmacol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632083

RESUMEN

AIMS: The hollow­fibre system for tuberculosis (HFS­TB) is a preclinical model qualified by the European Medicines Agency to underpin the anti­TB drug development process. It can mimic in vivo pharmacokinetic (PK)­pharmacodynamic (PD) attributes of selected antimicrobials, which could feed into in silico models to inform the design of clinical trials. However, historical data and published protocols are insufficient and omit key information to allow experiments to be reproducible. Therefore, in this work, we aim to optimize and standardize various HFS­TB operational procedures. METHODS: First, we characterized bacterial growth dynamics with different types of hollow­fibre cartridges, Mycobacterium tuberculosis strains and media. Second, we mimicked a moxifloxacin PK profile within hollow­fibre cartridges, in order to check drug­fibres compatibility. Lastly, we mimicked the moxifloxacin total plasma PK profile in human after once daily oral dose of 400 mg to assess PK­PD after different sampling methods, strains, cartridge size and bacterial adaptation periods before drug infusion into the system. RESULTS: We found that final bacterial load inside the HFS­TB was contingent on the studied variables. Besides, we demonstrated that drug­fibres compatibility tests are critical preliminary HFS­TB assays, which need to be properly reported. Lastly, we uncovered that the sampling method and bacterial adaptation period before drug infusion significantly impact actual experimental conclusions. CONCLUSION: Our data contribute to the necessary standardization of HFS­TB experiments, draw attention to multiple aspects of this preclinical model that should be considered when reporting novel results and warn about critical parameters in the HFS­TB currently overlooked.

2.
J Proteome Res ; 20(5): 2973-2982, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866785

RESUMEN

Osteoarthritis (OA) is a multifactorial pathology and comprises a wide range of distinct phenotypes. In this context, the characterization of the different molecular profiles associated with each phenotype can improve the classification of OA. In particular, OA can coexist with type 2 diabetes mellitus (T2DM). This study investigates lipidomic and proteomic differences between human OA/T2DM- and OA/T2DM+ cartilage through a multimodal mass spectrometry approach. Human cartilage samples were obtained after total knee replacement from OA/T2DM- and OA/T2DM+ patients. Label-free proteomics was employed to study differences in protein abundance and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) for spatially resolved-lipid analysis. Label-free proteomic analysis showed differences between OA/T2DM- and OA/T2DM+ phenotypes in several metabolic pathways such as lipid regulation. Interestingly, phospholipase A2 protein was found increased within the OA/T2DM+ cohort. In addition, MALDI-MSI experiments revealed that phosphatidylcholine and sphingomyelin species were characteristic of the OA/T2DM- group, whereas lysolipids were more characteristic of the OA/T2DM+ phenotype. The data also pointed out differences in phospholipid content between superficial and deep layers of the cartilage. Our study shows distinctively different lipid and protein profiles between OA/T2DM- and OA/T2DM+ human cartilage, demonstrating the importance of subclassification of the OA disease for better personalized treatments.


Asunto(s)
Cartílago Articular , Diabetes Mellitus Tipo 2 , Osteoartritis , Cartílago Articular/diagnóstico por imagen , Humanos , Lípidos , Osteoartritis/diagnóstico por imagen , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...