Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(5): e0054323, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534150

RESUMEN

We report the complete genome sequence of the Chlamydia psittaci АМК-16, recovered from the aborted caprine fetus during a case of chlamydia infection. This 1,152,497-bp genome with 7,552-bp cryptic plasmid provides novel insights into the genetic diversity of chlamydia agent strains particularly those causing the infection in small ruminants.

2.
PLoS One ; 18(10): e0293612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903115

RESUMEN

Chlamydia psittaci is a primary zoonotic pathogen with a broad host range causing severe respiratory and reproductive system infection in animals and humans. To reduce the global burden of C. psittaci-associated diseases on animal welfare and health and to control the pathogen spread in husbandry, effective vaccines based on promising vaccine candidate(s) are required. Recently, the caprine C. psittaci AMK-16 strain (AMK-16) demonstrated a high level of protection (up to 80-100%) in outbred mice and pregnant rabbits immunized with these formaldehyde-inactivated bacteria against experimental chlamydial wild-type infection. This study investigated the molecular characteristics of AMK-16 by whole-genome sequencing followed by molecular typing, phylogenetic analysis and detection of main immunodominant protein(s) eliciting the immune response in mouse model. Similarly to other C. psittaci, AMK-16 harbored an extrachromosomal plasmid. The whole-genome phylogenetic analysis proved that AMK-16 strain belonging to ST28 clustered with only C. psittaci but not with Chlamydia abortus strains. However, AMK-16 possessed the insert which resulted from the recombination event as the additional single chromosome region of a 23,100 bp size with higher homology to C. abortus (98.38-99.94%) rather than to C. psittaci (92.06-92.55%). At least six of 16 CDSs were absent in AMK-16 plasticity zone and 41 CDSs in other loci compared with the reference C. psittaci 6BC strain. Two SNPs identified in the AMK-16 ompA sequence resulted in MOMP polymorphism followed by the formation of a novel genotype/subtype including three other C. psittaci strains else. AMK-16 MOMP provided marked specific cellular and humoral immune response in 100% of mice immunized with the inactivated AMK-16 bacteria. Both DnaK and GrpE encoded by the recombination region genes were less immunoreactive, inducing only a negligible T-cell murine immune response, while homologous antibodies could be detected in 50% and 30% of immunized mice, respectively. Thus, AMK-16 could be a promising vaccine candidate for the development of a killed whole cell vaccine against chlamydiosis in livestock.


Asunto(s)
Infecciones por Chlamydia , Chlamydia , Chlamydophila psittaci , Psitacosis , Embarazo , Humanos , Femenino , Animales , Ratones , Conejos , Chlamydophila psittaci/genética , Filogenia , Cabras , Psitacosis/prevención & control , Psitacosis/veterinaria , Infecciones por Chlamydia/prevención & control , Infecciones por Chlamydia/veterinaria , Chlamydia/genética , Vacunas Bacterianas
3.
Data Brief ; 29: 105190, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32071972

RESUMEN

Chlamydiae are obligate intracellular bacteria globally widespread across humans, wildlife, and domesticated animals. Chlamydia psittaci is a primarily zoonotic pathogen with multiple hosts, which can be transmitted to humans, resulting in psittacosis or ornithosis. Since this pathogen is a well-recognized threat to human and animal health, it is critical to unravel in detail the genetic make-up of this microorganism. Though many genomes of C. psittaci have been studied to date, little is known about the variants of chlamydial organisms causing infection in Russian livestock. This research is the first de novo genome assembly of the C. psittaci strain Rostinovo-70 of zoonotic origin that was isolated in Russian Federation. The results were obtained by using standard protocols of sequencing with the Illumina HiSeq 2500 and Oxford Nanopore MinION technology that generated 3.88 GB and 3.08 GB of raw data, respectively. The data obtained are available in NCBI DataBase (GenBank accession numbers are CP041038.1 & CP041039.1). The Multi-Locus Sequence Typing (MLST) showed that the strain Rostinovo-70 together with C. psittaci GR9 and C. psittaci WS/RT/E30 belong to the sequence type (ST)28 that could be further separated into two different clades. Despite C. psittaci Rostinovo-70 and C. psittaci GR9 formed a single clade, the latter strain did not contain a cryptic plasmid characteristis to Rostinovo-70. Moreover, the genomes of two strains differed significantly in the cluster of 30 genes that in Rostinovo-70 were closer to Chlamydia abortus rather than C. psittaci. The alignment of the genomes of C. psittaci and C. abortus in this area revealed the exact boarders of homologous recombination that occurred between two Chlamydia species. These findings provide evidence for the first time of genetic exchange between closely related Chlamydia species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...