Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836598

RESUMEN

In the present work, the bond breaking/forming events along the intramolecular Diels-Alder (IMDA) reaction of (2E,4Z,6Z)-2(allyloxy)cycloocta-2,4,6-trien-1-one have been revealed within bonding evolution theory (BET) at the density functional theory level, using the M05-2X functional with the cc-pVTZ basis set. Prior to achieving this task, the energy profiles and stationary points at the potential energy surface (PES) have been characterized. The analysis of the results finds that this rearrangement can proceed along three alternative reaction pathways (a-c). Paths a and b involve two steps, while path c is a one-step process. The first step in path b is kinetically favored, and leads to the formation of an intermediate step, Int-b. Further evolution from Int-b leads mainly to 3-b1. However, 2 is the thermodynamically preferred product and is obtained at high temperatures, in agreement with the experimental observations. Regarding the BET analysis along path b, the breaking/forming process is described by four structural stability domains (SSDs) during the first step, which can be summarized as follows: (1) the breaking of the C-O bond with the transfer of its population to the lone pair (V(O)), (2) the reorganization of the electron density with the creation of two V(C) basins, and (3) the formation of a new C-C single bond via the merger of the two previous V(C) basins. Finally, the conversion of Int-b (via TS2-b1) occurs via the reorganization of the electron density during the first stage (the creation of different pseudoradical centers on the carbon atoms as a result of the depopulation of the C-C double bond involved in the formation of new single bonds), while the last stage corresponds to the non-concerted formation of the two new C-C bonds via the disappearance of the population of the four pseudoradical centers formed in the previous stage. On the other hand, along path a, the first step displays three SSDs, associated with the depopulation of the V(C2,C3) and V(C6,C7) basins, the appearance of the new monosynaptic basins V(C2) and V(C7), and finally the merging of these new monosynaptic basins through the creation of the C2-C7 single bond. The second step is described by a series of five SSDs, that account for the reorganization of the electron density within Int-a via the creation of four pseudoradical centers on the C12, C13, C3 and C6 carbon atoms. The last two SSDs deal with the formation of two C-C bonds via the merging of the monosynaptic basins formed in the previous domains.

2.
Front Pharmacol ; 11: 992, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903500

RESUMEN

Epigenetics refers to heritable changes in gene expression and chromatin structure without change in a DNA sequence. Several epigenetic modifications and respective regulators have been reported. These include DNA methylation, chromatin remodeling, histone post-translational modifications, and non-coding RNAs. Emerging evidence has revealed that epigenetic dysregulations are involved in a wide range of diseases including cancers. Therefore, the reversible nature of epigenetic modifications concerning activation or inhibition of enzymes involved could be promising targets and useful tools for the elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) making them promising candidates for the development of lead structures for anticancer-drugs targeting epigenetic modifications. However, most of the natural products targeting HDAC and/or DNMT lack isoform selectivity, which is important for determining their potential use as therapeutic agents. Nevertheless, the structures presented in this review offer the well-founded basis that screening and chemical modifications of natural products will in future provide not only leads to the identification of more specific inhibitors with fewer side effects, but also important features for the elucidation of HDAC and DNMT function with respect to cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...