Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 12(10): e0033723, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37747226

RESUMEN

We report draft genome sequences for 15 non-conventional Saccharomycotina yeast strains obtained from public culture repositories. Included in our collection are eight strains of Pichia with broad tolerance to dicarboxylic acids. The genome sequences of these strains will enable comparative genomics of acid-tolerant phenotypes and strain engineering of non-conventional hosts.

2.
Nat Commun ; 14(1): 5294, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652930

RESUMEN

Saccharomyces cerevisiae is a workhorse of industrial biotechnology owing to the organism's prominence in alcohol fermentation and the suite of sophisticated genetic tools available to manipulate its metabolism. However, S. cerevisiae is not suited to overproduce many bulk bioproducts, as toxicity constrains production at high titers. Here, we employ a high-throughput assay to screen 108 publicly accessible yeast strains for tolerance to 20 g L-1 adipic acid (AA), a nylon precursor. We identify 15 tolerant yeasts and select Pichia occidentalis for production of cis,cis-muconic acid (CCM), the precursor to AA. By developing a genome editing toolkit for P. occidentalis, we demonstrate fed-batch production of CCM with a maximum titer (38.8 g L-1), yield (0.134 g g-1 glucose) and productivity (0.511 g L-1 h-1) that surpasses all metrics achieved using S. cerevisiae. This work brings us closer to the industrial bioproduction of AA and underscores the importance of host selection in bioprocessing.


Asunto(s)
Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Pichia/genética , Ácido Sórbico
3.
J Biol Eng ; 13: 8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675181

RESUMEN

BACKGROUND: The automation of modular cloning methodologies permits the assembly of many genetic designs. Utilising characterised biological parts aids in the design and redesign of genetic pathways. The characterisation information held on datasheets can be used to determine whether a biological part meets the design requirements. To manage the design of genetic pathways, researchers have turned to modelling-based computer aided design software tools. RESULT: An automated workflow has been developed for the design and build of heterologous metabolic pathways. In addition, to demonstrate the powers of electronic datasheets we have developed software which can transfer part information from a datasheet to the Design of Experiment software JMP. To this end we were able to use Design of Experiment software to rationally design and test randomised samples from the design space of a lycopene pathway in E. coli. This pathway was optimised by individually modulating the promoter strength, RBS strength, and gene order targets. CONCLUSION: The use of standardised and characterised biological parts will empower a design-oriented synthetic biology for the forward engineering of heterologous expression systems. A Design of Experiment approach streamlines the design-build-test cycle to achieve optimised solutions in biodesign. Developed automated workflows provide effective transfer of information between characterised information (in the form of datasheets) and DoE software.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...