Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Genet ; 40(3): 213-227, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38320882

RESUMEN

Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Arrecifes de Coral , Temperatura , Genotipo , Cambio Climático
2.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995686

RESUMEN

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ancirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Inmunidad de la Planta/genética
5.
New Phytol ; 238(6): 2313-2328, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36856334

RESUMEN

Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.


Asunto(s)
Populus , Populus/genética , Clima , Estaciones del Año , Árboles/genética , Carbono , Temperatura , Cambio Climático
6.
Bioinformatics ; 38(20): 4809-4811, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053180

RESUMEN

SUMMARY: We developed grenepipe, an all-in-one Snakemake workflow to streamline the data processing from raw high-throughput sequencing data of individuals or populations to genotype variant calls. Our pipeline offers a range of popular software tools within a single configuration file, automatically installs software dependencies, is highly optimized for scalability in cluster environments and runs with a single command. AVAILABILITY AND IMPLEMENTATION: grenepipe is published under the GPLv3 and freely available at github.com/moiexpositoalonsolab/grenepipe.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Genotipo , Humanos , Flujo de Trabajo
7.
Elife ; 112022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047575

RESUMEN

The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.


Asunto(s)
Arabidopsis , Raíces de Plantas , Arabidopsis/fisiología , Fenómica , Fenotipo , Suelo
8.
Science ; 377(6613): 1431-1435, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137047

RESUMEN

Anthropogenic habitat loss and climate change are reducing species' geographic ranges, increasing extinction risk and losses of species' genetic diversity. Although preserving genetic diversity is key to maintaining species' adaptability, we lack predictive tools and global estimates of genetic diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity theory and population genetics to understand the loss of naturally occurring DNA mutations with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from 20 plant and animal species, we show that genome-wide diversity follows a mutations-area relationship power law with geographic area, which can predict genetic diversity loss from local population extinctions. We estimate that more than 10% of genetic diversity may already be lost for many threatened and nonthreatened species, surpassing the United Nations' post-2020 targets for genetic preservation.


Asunto(s)
Efectos Antropogénicos , Cambio Climático , Extinción Biológica , Variación Genética , Animales , Biodiversidad
9.
Nature ; 602(7895): 101-105, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35022609

RESUMEN

Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Modelos Genéticos , Mutagénesis , Mutación , Selección Genética/genética , Epigenoma/genética , Epigenómica , Frecuencia de los Genes , Genes Esenciales/genética , Genes de Plantas/genética , Genoma de Planta/genética , Tasa de Mutación , Polimorfismo Genético/genética
10.
Ann Bot ; 129(3): 343-356, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34918027

RESUMEN

BACKGROUND AND AIMS: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS: We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS: We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS: Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.


Asunto(s)
Arabidopsis , Aclimatación , Adaptación Fisiológica , Arabidopsis/genética , Nitrógeno , Fenotipo
11.
Elife ; 102021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34491200

RESUMEN

With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.


Asunto(s)
Células Vegetales , Agricultura , Chlamydomonas reinhardtii , Cloroplastos , Biología Computacional , Procesamiento de Imagen Asistido por Computador , Células Vegetales/fisiología , Desarrollo de la Planta , Plantas/clasificación , Plantas/genética , Zea mays
12.
Elife ; 102021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34402424

RESUMEN

The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.


Asunto(s)
Adaptación Fisiológica , Aedes/fisiología , Cambio Climático , Mosquitos Vectores/fisiología , Temperatura , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Dengue/transmisión , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/virología
13.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233164

RESUMEN

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructura
14.
Evol Appl ; 14(5): 1202-1212, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025760

RESUMEN

In nature conservation, there is keen interest in predicting how populations will respond to environmental changes such as climate change. These predictions can help determine whether a population can be self-sustaining under future alterations of its habitat or whether it may require human intervention such as protection, restoration, or assisted migration. An increasingly popular approach in this respect is the concept of genomic offset, which combines genomic and environmental data from different time points and/or locations to assess the degree of possible maladaptation to new environmental conditions. Here, we argue that the concept of genomic offset holds great potential, but an exploration of its risks and limitations is needed to use it for recommendations in conservation or assisted migration. After briefly describing the concept, we list important issues to consider (e.g., statistical frameworks, population genetic structure, migration, independent evidence) when using genomic offset or developing these methods further. We conclude that genomic offset is an area of development that still lacks some important features and should be used in combination with other approaches to inform conservation measures.

15.
Evol Lett ; 4(1): 4-18, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32055407

RESUMEN

Global climate change (GCC) increasingly threatens biodiversity through the loss of species, and the transformation of entire ecosystems. Many species are challenged by the pace of GCC because they might not be able to respond fast enough to changing biotic and abiotic conditions. Species can respond either by shifting their range, or by persisting in their local habitat. If populations persist, they can tolerate climatic changes through phenotypic plasticity, or genetically adapt to changing conditions depending on their genetic variability and census population size to allow for de novo mutations. Otherwise, populations will experience demographic collapses and species may go extinct. Current approaches to predicting species responses to GCC begin to combine ecological and evolutionary information for species distribution modelling. Including an evolutionary dimension will substantially improve species distribution projections which have not accounted for key processes such as dispersal, adaptive genetic change, demography, or species interactions. However, eco-evolutionary models require new data and methods for the estimation of a species' adaptive potential, which have so far only been available for a small number of model species. To represent global biodiversity, we need to devise large-scale data collection strategies to define the ecology and evolutionary potential of a broad range of species, especially of keystone species of ecosystems. We also need standardized and replicable modelling approaches that integrate these new data to account for eco-evolutionary processes when predicting the impact of GCC on species' survival. Here, we discuss different genomic approaches that can be used to investigate and predict species responses to GCC. This can serve as guidance for researchers looking for the appropriate experimental setup for their particular system. We furthermore highlight future directions for moving forward in the field and allocating available resources more effectively, to implement mitigation measures before species go extinct and ecosystems lose important functions.

17.
Plant J ; 102(2): 222-229, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31788877

RESUMEN

Sequencing them all. That is the ambitious goal of the recently launched Earth BioGenome project (Proceedings of the National Academy of Sciences of the United States of America, 115, 4325-4333), which aims to produce reference genomes for all eukaryotic species within the next decade. In this perspective, we discuss the opportunities of this project with a plant focus, but highlight also potential limitations. This includes the question of how to best capture all plant diversity, as the green taxon is one of the most complex clades in the tree of life, with over 300 000 species. For this, we highlight four key points: (i) the unique biological insights that could be gained from studying plants, (ii) their apparent underrepresentation in sequencing efforts given the number of threatened species, (iii) the necessity of phylogenomic methods that are aware of differences in genome complexity and quality, and (iv) the accounting for within-species genetic diversity and the historical aspect of conservation genetics.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Genoma de Planta/genética , Genómica , Plantas/genética , Planeta Tierra , Filogenia
18.
Nature ; 574(7778): E16, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31570884

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nature ; 573(7772): 126-129, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462776

RESUMEN

Through the lens of evolution, climate change is an agent of natural selection that forces populations to change and adapt, or face extinction. However, current assessments of the risk of biodiversity associated with climate change1 do not typically take into account how natural selection influences populations differently depending on their genetic makeup2. Here we make use of the extensive genome information that is available for Arabidopsis thaliana and measure how manipulation of the amount of rainfall affected the fitness of 517 natural Arabidopsis lines that were grown in Spain and Germany. This allowed us to directly infer selection along the genome3. Natural selection was particularly strong in the hot-dry location in Spain, where 63% of lines were killed and where natural selection substantially changed the frequency of approximately 5% of all genome-wide variants. A significant portion of this climate-driven natural selection of variants was predictable from signatures of local adaptation (R2 = 29-52%), as genetic variants that were found in geographical areas with climates more similar to the experimental sites were positively selected. Field-validated predictions across the species range indicated that Mediterranean and western Siberian populations-at the edges of the environmental limits of this species-currently experience the strongest climate-driven selection. With more frequent droughts and rising temperatures in Europe4, we forecast an increase in directional natural selection moving northwards from the southern end of Europe, putting many native A. thaliana populations at evolutionary risk.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Cambio Climático/estadística & datos numéricos , Genoma de Planta/genética , Selección Genética , Arabidopsis/crecimiento & desarrollo , Sequías/estadística & datos numéricos , Aptitud Genética , Mapeo Geográfico , Alemania , Calentamiento Global/estadística & datos numéricos , Polimorfismo de Nucleótido Simple/genética , Lluvia , Reproducibilidad de los Resultados , Siberia , España
20.
Evolution ; 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29947421

RESUMEN

The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness-related traits can be heterogeneous over time. We estimated selection of life-history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north-western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north-western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north-western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...