Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(21): e2218506120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192168

RESUMEN

Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción/genética , Células Germinativas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insectos/genética , Memoria a Largo Plazo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
PLoS Genet ; 19(1): e1010607, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689550

RESUMEN

With detailed data on gene expression accessible from an increasingly broad array of species, we can test the extent to which our developmental genetic knowledge from model organisms predicts expression patterns and variation across species. But to know when differences in gene expression across species are significant, we first need to know how much evolutionary variation in gene expression we expect to observe. Here we provide an answer by analyzing RNAseq data across twelve species of Hawaiian Drosophilidae flies, focusing on gene expression differences between the ovary and other tissues. We show that over evolutionary time, there exists a cohort of ovary specific genes that is stable and that largely corresponds to described expression patterns from laboratory model Drosophila species. Our results also provide a demonstration of the prediction that, as phylogenetic distance increases, variation between species overwhelms variation between tissue types. Using ancestral state reconstruction of expression, we describe the distribution of evolutionary changes in tissue-biased expression, and use this to identify gains and losses of ovary-biased expression across these twelve species. We then use this distribution to calculate the evolutionary correlation in expression changes between genes, and demonstrate that genes with known interactions in D. melanogaster are significantly more correlated in their evolution than genes with no or unknown interactions. Finally, we use this correlation matrix to infer new networks of genes that share evolutionary trajectories, and we present these results as a dataset of new testable hypotheses about genetic roles and interactions in the function and evolution of the Drosophila ovary.


Asunto(s)
Drosophila melanogaster , Ovario , Animales , Femenino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Filogenia , Hawaii , Genes de Insecto , Evolución Molecular , Drosophila/genética , Expresión Génica
3.
Nat Commun ; 13(1): 3889, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794113

RESUMEN

The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo's periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities.


Asunto(s)
Blastodermo , Gryllidae , Animales , Núcleo Celular , Drosophila melanogaster
4.
Curr Top Dev Biol ; 147: 291-306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337452

RESUMEN

Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.


Asunto(s)
Gryllidae , Animales , Abejas , Gryllidae/genética , Insectos
5.
Curr Opin Insect Sci ; 50: 100881, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35123119

RESUMEN

Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.


Asunto(s)
Edición Génica , Gryllidae , Animales , Tecnología de Alimentos , Edición Génica/métodos , Genómica , Gryllidae/genética , Insectos/genética
6.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35048974

RESUMEN

Island radiations present natural laboratories for studying the evolutionary process. The Hawaiian Drosophilidae are one such radiation, with nearly 600 described species and substantial morphological and ecological diversification. These species are largely divided into a few major clades, but the relationship between clades remains uncertain. Here, we present new assembled transcriptomes from 12 species across these clades, and use these transcriptomes to resolve the base of the evolutionary radiation. We recover a new hypothesis for the relationship between clades, and demonstrate its support over previously published hypotheses. We then use the evolutionary radiation to explore dynamics of concordance in phylogenetic support, by analyzing the gene and site concordance factors for every possible topological combination of major groups. We show that high bootstrap values mask low evolutionary concordance, and we demonstrate that the most likely topology is distinct from the topology with the highest support across gene trees and from the topology with highest support across sites. We then combine all previously published genetic data for the group to estimate a time-calibrated tree for over 300 species of drosophilids. Finally, we digitize dozens of published Hawaiian Drosophilidae descriptions, and use this to pinpoint probable evolutionary shifts in reproductive ecology as well as body, wing, and egg size. We show that by examining the entire landscape of tree and trait space, we can gain a more complete understanding of how evolutionary dynamics play out across an island radiation.


Asunto(s)
Drosophilidae , Animales , Evolución Biológica , Drosophila/genética , Drosophilidae/genética , Hawaii , Filogenia , Alas de Animales
7.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849771

RESUMEN

The survival and evolution of a species is a function of the number of offspring it can produce. In insects, the number of eggs that an ovary can produce is a major determinant of reproductive capacity. Insect ovaries are made up of tubular egg-producing subunits called ovarioles, whose number largely determines the number of eggs that can be potentially laid. Ovariole number in Drosophila is directly determined by the number of cellular structures called terminal filaments, which are stacks of cells that assemble in the larval ovary. Elucidating the developmental and regulatory mechanisms of terminal filament formation is thus key to understanding the regulation of insect reproduction through ovariole number regulation. We systematically measured mRNA expression of all cells in the larval ovary at the beginning, middle, and end of terminal filament formation. We also separated somatic and germ line cells during these stages and assessed their tissue-specific gene expression during larval ovary development. We found that the number of differentially expressed somatic genes is highest during the late stages of terminal filament formation and includes many signaling pathways that govern ovary development. We also show that germ line tissue, in contrast, shows greater differential expression during early stages of terminal filament formation, and highly expressed germ line genes at these stages largely control cell division and DNA repair. We provide a tissue-specific and temporal transcriptomic dataset of gene expression in the developing larval ovary as a resource to study insect reproduction.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Expresión Génica , Células Germinativas/metabolismo , Morfogénesis/genética
9.
Mol Biol Evol ; 38(12): 5491-5513, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34550378

RESUMEN

Germ line specification is essential in sexually reproducing organisms. Despite their critical role, the evolutionary history of the genes that specify animal germ cells is heterogeneous and dynamic. In many insects, the gene oskar is required for the specification of the germ line. However, the germ line role of oskar is thought to be a derived role resulting from co-option from an ancestral somatic role. To address how evolutionary changes in protein sequence could have led to changes in the function of Oskar protein that enabled it to regulate germ line specification, we searched for oskar orthologs in 1,565 publicly available insect genomic and transcriptomic data sets. The earliest-diverging lineage in which we identified an oskar ortholog was the order Zygentoma (silverfish and firebrats), suggesting that oskar originated before the origin of winged insects. We noted some order-specific trends in oskar sequence evolution, including whole gene duplications, clade-specific losses, and rapid divergence. An alignment of all known 379 Oskar sequences revealed new highly conserved residues as candidates that promote dimerization of the LOTUS domain. Moreover, we identified regions of the OSK domain with conserved predicted RNA binding potential. Furthermore, we show that despite a low overall amino acid conservation, the LOTUS domain shows higher conservation of predicted secondary structure than the OSK domain. Finally, we suggest new key amino acids in the LOTUS domain that may be involved in the previously reported Oskar-Vasa physical interaction that is required for its germ line role.


Asunto(s)
Proteínas de Drosophila , Drosophila , Secuencia de Aminoácidos , Animales , ARN Helicasas DEAD-box/genética , Drosophila/genética , Proteínas de Drosophila/genética , Células Germinativas/metabolismo , Oocitos/metabolismo
10.
J Exp Zool B Mol Dev Evol ; 336(8): 589-590, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34185382
11.
Commun Biol ; 4(1): 733, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127782

RESUMEN

Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.


Asunto(s)
Evolución Molecular , Genoma de los Insectos/genética , Gryllidae/genética , Insectos/genética , Animales , Metilación de ADN , Elementos Transponibles de ADN/genética , Femenino , Genes de Insecto/genética , Masculino , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
12.
J Evol Biol ; 34(8): 1188-1211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114713

RESUMEN

Sex-biased gene expression, particularly sex-biased expression in the gonad, has been linked to rates of protein sequence evolution (nonsynonymous to synonymous substitutions, dN/dS) in animals. However, in insects, sex-biased expression studies remain centred on a few holometabolous species. Moreover, other major tissue types such as the brain remain underexplored. Here, we studied sex-biased gene expression and protein evolution in a hemimetabolous insect, the cricket Gryllus bimaculatus. We generated novel male and female RNA-seq data for two sexual tissue types, the gonad and somatic reproductive system, and for two core components of the nervous system, the brain and ventral nerve cord. From a genome-wide analysis, we report several core findings. Firstly, testis-biased genes had accelerated evolution, as compared to ovary-biased and unbiased genes, which was associated with positive selection events. Secondly, although sex-biased brain genes were much less common than for the gonad, they exhibited a striking tendency for rapid protein sequence evolution, an effect that was stronger for the female than male brain. Further, some sex-biased brain genes were linked to sexual functions and mating behaviours, which we suggest may have accelerated their evolution via sexual selection. Thirdly, a tendency for narrow cross-tissue expression breadth, suggesting low pleiotropy, was observed for sex-biased brain genes, suggesting relaxed purifying selection, which we speculate may allow enhanced freedom to evolve adaptive protein functional changes. The findings of rapid evolution of testis-biased genes and male and female-biased brain genes are discussed with respect to pleiotropy, positive selection and the mating biology of this cricket.


Asunto(s)
Gónadas , Caracteres Sexuales , Animales , Encéfalo , Femenino , Masculino , Ovario , Testículo
13.
Proc Biol Sci ; 288(1950): 20210150, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33947234

RESUMEN

The number of offspring an organism can produce is a key component of its evolutionary fitness and life history. Here we perform a test of the hypothesized trade-off between the number and size of offspring using thousands of descriptions of the number of egg-producing compartments in the insect ovary (ovarioles), a common proxy for potential offspring number in insects. We find evidence of a negative relationship between egg size and ovariole number when accounting for adult body size. However, in contrast to prior claims, we note that this relationship is not generalizable across all insect clades, and we highlight several factors that may have contributed to this size-number trade-off being stated as a general rule in previous studies. We reconstruct the evolution of the arrangement of cells that contribute nutrients and patterning information during oogenesis (nurse cells), and show that the diversification of ovariole number and egg size have both been largely independent of their presence or position within the ovariole. Instead, we show that ovariole number evolution has been shaped by a series of transitions between variable and invariant states, with multiple independent lineages evolving to have almost no variation in ovariole number. We highlight the implications of these invariant lineages on our understanding of the specification of ovariole number during development, as well as the importance of considering developmental processes in theories of life-history evolution.


Asunto(s)
Insectos , Ovario , Animales , Femenino
14.
BMC Genomics ; 22(1): 234, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823803

RESUMEN

BACKGROUND: For multicellular organisms, much remains unknown about the dynamics of synonymous codon and amino acid use in highly expressed genes, including whether their use varies with expression in different tissue types and sexes. Moreover, specific codons and amino acids may have translational functions in highly transcribed genes, that largely depend on their relationships to tRNA gene copies in the genome. However, these relationships and putative functions are poorly understood, particularly in multicellular systems. RESULTS: Here, we studied codon and amino acid use in highly expressed genes from reproductive and nervous system tissues (male and female gonad, somatic reproductive system, brain and ventral nerve cord, and male accessory glands) in the cricket Gryllus bimaculatus. We report an optimal codon, defined as the codon preferentially used in highly expressed genes, for each of the 18 amino acids with synonymous codons in this organism. The optimal codons were mostly shared among tissue types and both sexes. However, the frequency of optimal codons was highest in gonadal genes. Concordant with translational selection, a majority of the optimal codons had abundant matching tRNA gene copies in the genome, but sometimes obligately required wobble tRNAs. We suggest the latter may comprise a mechanism for slowing translation of abundant transcripts, particularly for cell-cycle genes. Non-optimal codons, defined as those least commonly used in highly transcribed genes, intriguingly often had abundant tRNAs, and had elevated use in a subset of genes with specialized functions (gametic and apoptosis genes), suggesting their use promotes the translational upregulation of particular mRNAs. In terms of amino acids, we found evidence suggesting that amino acid frequency, tRNA gene copy number, and amino acid biosynthetic costs (size/complexity) had all interdependently evolved in this insect model, potentially for translational optimization. CONCLUSIONS: Collectively, the results suggest a model whereby codon use in highly expressed genes, including optimal, wobble, and non-optimal codons, and their tRNA abundances, as well as amino acid use, have been influenced by adaptation for various functional roles in translation within this cricket. The effects of expression in different tissue types and the two sexes are discussed.


Asunto(s)
Aminoácidos , Gryllidae , Aminoácidos/metabolismo , Animales , Codón/genética , Femenino , Dosificación de Gen , Gryllidae/genética , Gryllidae/metabolismo , Masculino , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
15.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32901612

RESUMEN

Understanding the genetic regulation of organ structure is a fundamental problem in developmental biology. Here, we use egg-producing structures of insect ovaries, called ovarioles, to deduce systems-level gene regulatory relationships from quantitative functional genetic analysis. We previously showed that Hippo signalling, a conserved regulator of animal organ size, regulates ovariole number in Drosophila melanogaster. To comprehensively determine how Hippo signalling interacts with other pathways in this regulation, we screened all known signalling pathway genes, and identified Hpo-dependent and Hpo-independent signalling requirements. Network analysis of known protein-protein interactions among screen results identified independent gene regulatory sub-networks regulating one or both of ovariole number and egg laying. These sub-networks predict involvement of previously uncharacterised genes with higher accuracy than the original candidate screen. This shows that network analysis combining functional genetic and large-scale interaction data can predict function of novel genes regulating development.


Asunto(s)
Drosophila melanogaster/fisiología , Redes Reguladoras de Genes/fisiología , Oviposición/genética , Mapas de Interacción de Proteínas , Animales , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Femenino , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/genética
16.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341024

RESUMEN

How much evolutionary change in development do we expect? In this Spotlight, we argue that, as developmental biologists, we are in a prime position to contribute to the definition of a null hypothesis for developmental evolution: in other words, a hypothesis for how much developmental evolution we expect to observe over time. Today, we have access to an unprecedented array of developmental data from across the tree of life. Using these data, we can now consider development in the light of evolution, and vice versa, more deeply than ever before. As we do this, we may need to re-examine previous assumptions that appeared to serve us well when data points were fewer. Specifically, we think it is important to challenge assumptions that change is very rare for all developmental traits, especially if this assumption is used to sustain an erroneous view that evolution always optimizes adaptive traits toward increasing complexity.


Asunto(s)
Evolución Biológica , Crecimiento y Desarrollo , Modelos Biológicos , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Insectos/genética
17.
Elife ; 92020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32091394

RESUMEN

New cellular functions and developmental processes can evolve by modifying existing genes or creating novel genes. Novel genes can arise not only via duplication or mutation but also by acquiring foreign DNA, also called horizontal gene transfer (HGT). Here we show that HGT likely contributed to the creation of a novel gene indispensable for reproduction in some insects. Long considered a novel gene with unknown origin, oskar has evolved to fulfil a crucial role in insect germ cell formation. Our analysis of over 100 insect Oskar sequences suggests that oskar arose de novo via fusion of eukaryotic and prokaryotic sequences. This work shows that highly unusual gene origin processes can give rise to novel genes that may facilitate evolution of novel developmental mechanisms.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas de Drosophila/genética , Células Germinativas/microbiología , Animales , Teorema de Bayes , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/genética , Evolución Molecular , Transferencia de Gen Horizontal , Funciones de Verosimilitud , Filogenia
18.
G3 (Bethesda) ; 10(3): 1125-1136, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31988160

RESUMEN

The faster-X effect, namely the rapid evolution of protein-coding genes on the X chromosome, has been widely reported in metazoans. However, the prevalence of this phenomenon across diverse systems and its potential causes remain largely unresolved. Analysis of sex-biased genes may elucidate its possible mechanisms: for example, in systems with X/Y males a more pronounced faster-X effect in male-biased genes than in female-biased or unbiased genes may suggest fixation of recessive beneficial mutations rather than genetic drift. Further, theory predicts that the faster-X effect should be promoted by X chromosome dosage compensation. Here, we asked whether we could detect a faster-X effect in genes of the beetle Tribolium castaneum (and T. freemani orthologs), which has X/Y sex-determination and heterogametic males. Our comparison of protein sequence divergence (dN/dS) on the X chromosome vs. autosomes indicated a rarely observed absence of a faster-X effect in this organism. Further, analyses of sex-biased gene expression revealed that the X chromosome was particularly highly enriched for ovary-biased genes, which evolved slowly. In addition, an evaluation of male X chromosome dosage compensation in the gonads and in non-gonadal somatic tissues indicated a striking lack of compensation in the testis. This under-expression in testis may limit fixation of recessive beneficial X-linked mutations in genes transcribed in these male sex organs. Taken together, these beetles provide an example of the absence of a faster-X effect on protein evolution in a metazoan, that may result from two plausible factors, strong constraint on abundant X-linked ovary-biased genes and a lack of gonadal dosage compensation.


Asunto(s)
Cromosomas de Insectos , Tribolium/genética , Cromosoma X , Animales , Femenino , Expresión Génica , Masculino , Ovario/metabolismo , RNA-Seq , Caracteres Sexuales , Testículo/metabolismo
19.
Results Probl Cell Differ ; 68: 183-216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31598857

RESUMEN

All extant species are an outcome of nature's "experiments" during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of "traditional" model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.


Asunto(s)
Gryllidae/genética , Gryllidae/fisiología , Modelos Animales , Animales , Drosophila melanogaster , Abastecimiento de Alimentos , Gryllidae/embriología , Gryllidae/microbiología
20.
J Vis Exp ; (150)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31498320

RESUMEN

Altering gene function in a developing organism is central to different kinds of experiments. While tremendously powerful genetic tools have been developed in traditional model systems, it is difficult to manipulate genes or messenger RNA (mRNA) in most other organisms. At the same time, evolutionary and comparative approaches rely on an exploration of gene function in many different species, necessitating the development and adaptation of techniques for manipulating expression outside currently genetically tractable species. This protocol describes a method for injecting reagents into cricket eggs to assay the effects of a given manipulation on embryonic or larval development. Instructions for how to collect and inject eggs with beveled needles are described. This relatively straightforward technique is flexible and potentially adaptable to other insects. One can gather and inject dozens of eggs in a single experiment, and survival rates for buffer-only injections improve with practice and can be as high as 80%. This technique will support several types of experimental approaches including injection of pharmacological agents, in vitro capped mRNA to express genes of interest, double-stranded RNA (dsRNA) to achieve RNA interference, use of clustered regularly interspaced short palindromic repeats (CRISPR) in concert with CRISPR-associated protein 9 (Cas9) reagents for genomic modification, and transposable elements to generate transient or stable transgenic lines.


Asunto(s)
Gryllidae , Microinyecciones/instrumentación , Microinyecciones/métodos , Óvulo , Animales , Sistemas CRISPR-Cas , Agujas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...