Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11267, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638366

RESUMEN

Demographic histories are frequently a product of the environment, as populations expand or contract in response to major environmental changes, often driven by changes in climate. Meso- and bathy-pelagic fishes inhabit some of the most temporally and spatially stable habitats on the planet. The stability of the deep-pelagic could make deep-pelagic fishes resistant to the demographic instability commonly reported in fish species inhabiting other marine habitats, however the demographic histories of deep-pelagic fishes are unknown. We reconstructed the historical demography of 11 species of deep-pelagic fishes using mitochondrial and nuclear DNA sequence data. We uncovered widespread evidence of population expansions in our study species, a counterintuitive result based on the nature of deep-pelagic ecosystems. Frequency-based methods detected potential demographic changes in nine species of fishes, while extended Bayesian skyline plots identified population expansions in four species. These results suggest that despite the relatively stable nature of the deep-pelagic environment, the fishes that reside here have likely been impacted by past changes in climate. Further investigation is necessary to better understand how deep-pelagic fishes, by far Earth's most abundant vertebrates, will respond to future climatic changes.

2.
Mol Phylogenet Evol ; 189: 107933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769827

RESUMEN

As some of the smallest vertebrates, yet largest producers of consumed reef biomass, cryptobenthic reef fishes serve a disproportionate role in reef ecosystems and are one of the most poorly understood groups of fish. The blenny genera Hypleurochilus and Parablennius are currently considered paraphyletic and the interrelationships of Parablennius have been the focus of recent phylogenetic studies. However, the interrelationships of Hypleurochilus remain understudied. This genus is transatlantically distributed and comprises 11 species with a convoluted taxonomic history. In this study, relationships for ten Hypleurochilus species are resolved using multi-locus nuclear and mtDNA sequence data, morphological data, and mined COI barcode data.  Mitochondrial and nuclear sequence data from 61 individuals collected from the western Atlantic and northern Gulf of Mexico (N. GoM) delimit seven species into a temperate clade, a tropical clade, and a third distinct lineage. This lineage, herein referred to as H. cf. aequipinnis, may represent a species of Hypleurochilus whose range has expanded into the N. GoM. Inclusion of publicly available COI sequence for an additional three species provides further phylogenetic resolution. H. bananensis forms a new eastern Atlantic clade with H. cf. aequipinnis, providing further evidence for a western Atlantic range expansion. Single marker COI delimitation was unable to elucidate the relationships between H. springeri/H. pseudoaequipinnis and between H. multifilis/H. caudovittatus due to incomplete lineage sorting. Mitochondrial data are also unable to accurately resolve the placement of H. bermudensis. However, a comprehensive approach using multi-locus phylogenetic and species delimitation methods was able to resolve these relationships. While mining publicly available sequence data allowed for the inclusion of an increased number of species in the analysis and a more comprehensive phylogeny, it was not without drawbacks, as a handful of sequences are potentially mis-identified. Overall, we find that the recent divergence of some species within this genus and potential introgression events confound the results of single locus delimitation methods, yet a combination of single and multi-locus analyses has allowed for insights into the biogeography of this genus and uncovered a potential transatlantic range expansion.


Asunto(s)
Ecosistema , Perciformes , Animales , Filogenia , Golfo de México , ADN Mitocondrial/genética , Peces/genética , Teorema de Bayes
3.
Mol Phylogenet Evol ; 182: 107757, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925090

RESUMEN

The progressive aridification of the Australian continent from âˆ¼ 20 million years ago posed severe challenges for the persistence of its resident biota. A key question involves the role of refugial habitats - specifically, their ability to mediate the effects of habitat loss and fragmentation, and their potential to shape opportunities for allopatric speciation. With freshwater species, for example, the patchiness, or absence, of water will constrain distributions. However, aridity may not necessarily isolate populations if disjunct refugia experience frequent hydrological connections. To investigate this potential dichotomy, we explored the evolutionary history of the Chlamydogobius gobies (Gobiiformes: Gobiidae), an arid-adapted genus of six small, benthic fish species that exploit all types of waterbodies (i.e. desert springs, waterholes and bore-fed wetlands, coastal estuarine creeks and mangroves) across parts of central and northern Australia. We used Anchored Phylogenomics to generate a highly resolved phylogeny of the group from sequence data for 260 nuclear loci. Buttressed by companion allozyme and mtDNA datasets, our molecular findings infer the diversification of Chlamydogobius in arid Australia, and provide a phylogenetic structure that cannot be simply explained by invoking allopatric speciation events reflecting current geographic proximity. Our findings are generally consistent with the existing morphological delimitation of species, with one exception: at the shallowest nodes of phylogenetic reconstruction, the molecular data do not fully support the current dichotomous delineation of C. japalpa from C. eremius in Kati Thanda-Lake Eyre-associated waterbodies. Together these findings illustrate the ability of structural (hydrological) connections to generate patterns of connectivity and isolation for an ecologically moderate disperser in response to ongoing habitat aridification. Finally, we explore the implications of these results for the immediate management of threatened (C. gloveri) and critically endangered (C. micropterus, C. squamigenus) congeners.


Asunto(s)
Evolución Biológica , Perciformes , Animales , Filogenia , Australia , Peces/genética , Ecosistema , Perciformes/genética , ADN Mitocondrial/genética
4.
Mitochondrial DNA B Resour ; 7(2): 353-355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174288

RESUMEN

The blennies, Acanthemblemaria spinosa (Chaenopsidae) and Enneanectes altivelis (Tripterygiidae) are representative members of two families spanning the deepest node of the Blennioidei tree. The mitogenomes of 16,507 bp for A. spinosa and 16,529 bp for E. altivelis each consisted of 37 genes and one control loop region. Phylogenetic analysis confirmed the placement of Chaenopsidae and Tripterygiidae within the Blenniiformes, however, there was instability in the placement of the triplefins between reconstruction methods, likely due to low taxon sampling. These mitogenomes represent an important milestone in uncovering relationships within Blenniiformes and Ovalentaria.

5.
Ecol Evol ; 11(16): 11449-11456, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429932

RESUMEN

Allopatry has traditionally been viewed as the primary driver of speciation in marine taxa, but the geography of the marine environment and the larval dispersal capabilities of many marine organisms render this view somewhat questionable. In marine fishes, one of the earliest and most highly cited empirical examples of ecological speciation with gene flow is the slippery dick wrasse, Halichoeres bivittatus. Evidence for this cryptic or incipient speciation event was primarily in the form of a deep divergence in a single mitochondrial locus between the northern and southern Gulf of Mexico, combined with a finding that these two haplotypes were associated with different habitat types ("tropical" vs. "subtropical") in the Florida Keys and Bermuda, where they overlap. Here, we examine habitat assortment in the Florida Keys using a broader sampling of populations and habitat types than were available for the original study. We find no evidence to support the claim that haplotype frequencies differ between habitat types, and little evidence to support any differences between populations in the Keys. These results undermine claims of ecological speciation with gene flow in Halichoeres bivittatus. Future claims of this type should be supported by multiple lines of evidence that illuminate potential mechanisms and allow researchers to rule out alternative explanations for spatial patterns of genetic differences.

6.
Zootaxa ; 4816(2): zootaxa.4816.2.5, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-33055705

RESUMEN

Acanthemblemaria aceroi new species is described from the upwelling region of the Caribbean coasts of Venezuela and Colombia. It differs from its closest relative, Acanthemblemaria rivasi Stephens, 1970, known from Panama and Costa Rica, in the posterior extent of the infraorbitals, details of head spination, and unique COI sequences. The description of Acanthemblemaria johnsonsi Almany Baldwin, 1996, heretofore known only from Tobago, is expanded based on specimens from islands offshore of eastern Venezuela.


Asunto(s)
Peces , Animales , Región del Caribe , América del Sur
7.
Microbiol Resour Announc ; 8(14)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948466

RESUMEN

Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. The availability of these genomes will aid future analyses of acroporid serratiosis.

8.
Mol Phylogenet Evol ; 110: 27-38, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254474

RESUMEN

Percomorph fishes represent over 17,100 species, including several model organisms and species of economic importance. Despite continuous advances in the resolution of the percomorph Tree of Life, resolution of the sister lineage to Percomorpha remains inconsistent but restricted to a small number of candidate lineages. Here we use an anchored hybrid enrichment (AHE) dataset of 132 loci with over 99,000 base pairs to identify the sister lineage of percomorph fishes. Initial analyses of this dataset failed to recover a strongly supported sister clade to Percomorpha, however, scrutiny of the AHE dataset revealed a bias towards high GC content at fast-evolving codon partitions (GC bias). By combining several existing approaches aimed at mitigating the impacts of convergence in GC bias, including RY coding and analyses of amino acids, we consistently recovered a strongly supported clade comprised of Holocentridae (squirrelfishes), Berycidae (Alfonsinos), Melamphaidae (bigscale fishes), Cetomimidae (flabby whalefishes), and Rondeletiidae (redmouth whalefishes) as the sister lineage to Percomorpha. Additionally, implementing phylogenetic informativeness (PI) based metrics as a filtration method yielded this same topology, suggesting PI based approaches will preferentially filter these fast-evolving regions and act in a manner consistent with other phylogenetic approaches aimed at mitigating GC bias. Our results provide a new perspective on a key issue for studies investigating the evolutionary history of more than one quarter of all living species of vertebrates.


Asunto(s)
Bases de Datos Genéticas , Peces/clasificación , Peces/genética , Hibridación Genética , Filogenia , Aminoácidos/genética , Animales , Composición de Base/genética , Genómica , Funciones de Verosimilitud , Nucleótidos/genética , Especificidad de la Especie
9.
BMC Evol Biol ; 16(1): 224, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769164

RESUMEN

BACKGROUND: Flatfish cranial asymmetry represents one of the most remarkable morphological innovations among vertebrates, and has fueled vigorous debate on the manner and rate at which strikingly divergent phenotypes evolve. A surprising result of many recent molecular phylogenetic studies is the lack of support for flatfish monophyly, where increasingly larger DNA datasets of up to 23 loci have either yielded a weakly supported flatfish clade or indicated the group is polyphyletic. Lack of resolution for flatfish relationships has been attributed to analytical limitations for dealing with processes such as nucleotide non-stationarity and incomplete lineage sorting (ILS). We tackle this phylogenetic problem using a sequence dataset comprising more than 1,000 ultraconserved DNA element (UCE) loci covering 45 carangimorphs, the broader clade containing flatfishes and several other specialized lineages such as remoras, billfishes, and archerfishes. RESULTS: We present a phylogeny based on UCE loci that unequivocally supports flatfish monophyly and a single origin of asymmetry. We document similar levels of discordance among UCE loci as in previous, smaller molecular datasets. However, relationships among flatfishes and carangimorphs recovered from multilocus concatenated and species tree analyses of our data are robust to the analytical framework applied and size of data matrix used. By integrating the UCE data with a rich fossil record, we find that the most distinctive carangimorph bodyplans arose rapidly during the Paleogene (66.0-23.03 Ma). Flatfish asymmetry, for example, likely evolved over an interval of no more than 2.97 million years. CONCLUSIONS: The longstanding uncertainty in phylogenetic hypotheses for flatfishes and their carangimorph relatives highlights the limitations of smaller molecular datasets when applied to successive, rapid divergences. Here, we recovered significant support for flatfish monophyly and relationships among carangimorphs through analysis of over 1,000 UCE loci. The resulting time-calibrated phylogeny points to phenotypic divergence early within carangimorph history that broadly matches with the predictions of adaptive models of lineage diversification.


Asunto(s)
Evolución Biológica , Peces Planos/anatomía & histología , Peces Planos/genética , Animales , Peces/anatomía & histología , Peces/clasificación , Peces/genética , Peces Planos/clasificación , Fósiles , Especiación Genética , Filogenia , Análisis de Secuencia de ADN
10.
Sci Adv ; 2(8): e1600883, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27540590

RESUMEN

The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.


Asunto(s)
Evolución Biológica , Geología , Océanos y Mares , Filogeografía , Américas , Ecosistema , Ambiente , Fósiles , Paleontología , Panamá
11.
Mol Phylogenet Evol ; 104: 32-43, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27421566

RESUMEN

The marine fauna of the Southern Ocean is well known for an impressive adaptive radiation of fishes, the notothenioids. However, when compared to other marine areas, the frigid waters of the Southern Ocean also contain a seemingly large proportion of cryptic species. The documented instances of speciation in the absence of morphological change are largely observed in invertebrate taxa, in particular around peri- and sub-Antarctic islands such as South Georgia, which has been dubbed a cryptic species hotspot. This prevalence of cryptic species raises the question of how generalizable these patterns are for Antarctic vertebrates. Here we examine aspects of genotype and phenotype in an Antarctic notothenioid fish species, Lepidonotothen nudifrons, which is distributed in near shore habitats of the Antarctic Peninsula, South Orkney Islands, South Georgia, and the South Sandwich Islands. The results of our analyses show that L. nudifrons comprises two species. We highlight that cryptic species are phenomena not restricted to invertebrate lineages, raising the possibility that the species diversity of notothenioids and other Southern Ocean fishes is under-described. In addition, our findings raise several questions about the evolutionary origin and maintenance of morphological stasis in one of the most extreme habitats on earth.


Asunto(s)
Perciformes/clasificación , Animales , Regiones Antárticas , Biodiversidad , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/clasificación , ADN Mitocondrial/metabolismo , Análisis Discriminante , Ecosistema , Evolución Molecular , Haplotipos , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , NADH Deshidrogenasa/clasificación , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Perciformes/genética , Filogenia , Análisis de Componente Principal , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
Mol Phylogenet Evol ; 93: 172-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26265255

RESUMEN

The percomorph fish clade Gobiiformes is a worldwide, tropical and temperate radiation with species occupying nearly all aquatic, and some semi-terrestrial, habitats. Early molecular phylogenetic studies led to the discovery of Gobiiformes, which contains Gobioidei, the gobies and sleepers, and a clade (Apogonoidei) consisting of Apogonidae and Kurtus, the cardinalfishes and nurseryfishes. Gobioidei is consistently resolved as monophyletic in molecular studies, and includes eight families whose members range from waterfall climbing stream gobies to several prominent lineages inhabiting coral reefs. The sister taxon to Gobioidei is also reliably resolved as Apogonoidei. Despite the consistent support for gobiiform monophyly in molecular studies, it is not known if percomorph lineages unsampled in molecular phylogenetic studies are closely related to Gobioidei or Apogonoidei. Here we assemble a large dataset of DNA sequence from ten protein-coding genes, sampling widely across Acanthomorpha and Percomorpha, including Gobioidei, Apogonidae, and Kurtus, along with representatives of all twelve families comprising the former Trachinoidei. The phylogenies inferred from the nuclear gene sequences show that Trachinoidei is polyphyletic, with constituent lineages spread widely among several major percomorph clades. Most notably, the sanddivers (Trichonotus) are resolved as the sister lineage of Gobioidei. This study clarifies the phylogenetic relationships of lineages previously classified in Trachinoidei, identifies Trichonotus as the sister lineage of gobies, provides a molecular phylogeny of the major lineages of Gobioidei, and offers suggested changes to percomorph classification.


Asunto(s)
Peces/genética , Animales , Secuencia de Bases , Femenino , Proteínas de Peces/genética , Masculino , Filogenia , Análisis de Secuencia de ADN
14.
BMC Evol Biol ; 15: 113, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-26071950

RESUMEN

BACKGROUND: The past decade has witnessed remarkable progress towards resolution of the Tree of Life. However, despite the increased use of genomic scale datasets, some phylogenetic relationships remain difficult to resolve. Here we employ anchored phylogenomics to capture 107 nuclear loci in 29 species of acanthomorph teleost fishes, with 25 of these species sampled from the recently delimited clade Ovalentaria. Previous studies employing multilocus nuclear exon datasets have not been able to resolve the nodes at the base of the Ovalentaria tree with confidence. Here we test whether a phylogenomic approach will provide better support for these nodes, and if not, why this may be. RESULTS: After using a novel method to account for paralogous loci, we estimated phylogenies with maximum likelihood and species tree methods using DNA sequence alignments of over 80,000 base pairs. Several key relationships within Ovalentaria are well resolved, including 1) the sister taxon relationship between Cichlidae and Pholidichthys, 2) a clade containing blennies, grammas, clingfishes, and jawfishes, and 3) monophyly of Atherinomorpha (topminnows, flyingfishes, and silversides). However, many nodes in the phylogeny associated with the early diversification of Ovalentaria are poorly resolved in several analyses. Through the use of rarefaction curves we show that limited phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny does not appear to be due to a deficiency of data, as average global node support ceases to increase when only 1/3rd of the sampled loci are used in analyses. Instead this lack of resolution may be driven by model misspecification as a Bayesian mixed model analysis of the amino acid dataset provided good support for parts of the base of the Ovalentaria tree. CONCLUSIONS: Although it does not appear that the limited phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny is due to a deficiency of data, it may be that both stochastic and systematic error resulting from model misspecification play a role in the poor resolution at the base of the Ovalentaria tree as a Bayesian approach was able to resolve some of the deeper nodes, where the other methods failed.


Asunto(s)
Peces/clasificación , Peces/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Tipificación de Secuencias Multilocus/métodos , Animales , Teorema de Bayes , Filogenia
15.
Evolution ; 69(1): 146-61, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25407924

RESUMEN

One of the most striking biodiversity patterns is the uneven distribution of marine species richness, with species diversity in the Indo-Australian Archipelago (IAA) exceeding all other areas. However, the IAA formed fairly recently, and marine biodiversity hotspots have shifted across nearly half the globe since the Paleogene. Understanding how lineages have responded to shifting biodiversity hotspots represents a necessary historic perspective on the formation and maintenance of global marine biodiversity. Such evolutionary inferences are often challenged by a lack of fossil evidence that provide insights into historic patterns of abundance and diversity. The greatest diversity of squirrelfishes and soldierfishes (Holocentridae) is in the IAA, yet these fishes also represent some of the most numerous fossil taxa in deposits of the former West Tethyan biodiversity hotspot. We reconstruct the pattern of holocentrid range evolution using time-calibrated phylogenies that include most living species and several fossil lineages, demonstrating the importance of including fossil species as terminal taxa in ancestral area reconstructions. Holocentrids exhibit increased range fragmentation following the West Tethyan hotspot collapse. However, rather than originating within the emerging IAA hotspot, the IAA has acted as a reservoir for holocentrid diversity that originated in adjacent regions over deep evolutionary time scales.


Asunto(s)
Biodiversidad , Evolución Molecular , Peces/genética , Fósiles , Animales , Arrecifes de Coral , Variación Genética , Océanos y Mares
16.
Proc Biol Sci ; 280(1770): 20131733, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24048155

RESUMEN

Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography.


Asunto(s)
Cíclidos/clasificación , Cíclidos/genética , Proteínas de Peces/genética , Fósiles , Animales , Evolución Biológica , Cíclidos/anatomía & histología , Evolución Molecular , Evolución Planetaria , Proteínas de Peces/metabolismo , Peces/genética , Peces/metabolismo , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
17.
Proc Natl Acad Sci U S A ; 110(31): 12738-43, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858462

RESUMEN

Spiny-rayed fishes, or acanthomorphs, comprise nearly one-third of all living vertebrates. Despite their dominant role in aquatic ecosystems, the evolutionary history and tempo of acanthomorph diversification is poorly understood. We investigate the pattern of lineage diversification in acanthomorphs by using a well-resolved time-calibrated phylogeny inferred from a nuclear gene supermatrix that includes 520 acanthomorph species and 37 fossil age constraints. This phylogeny provides resolution for what has been classically referred to as the "bush at the top" of the teleost tree, and indicates acanthomorphs originated in the Early Cretaceous. Paleontological evidence suggests acanthomorphs exhibit a pulse of morphological diversification following the end Cretaceous mass extinction; however, the role of this event on the accumulation of living acanthomorph diversity remains unclear. Lineage diversification rates through time exhibit no shifts associated with the end Cretaceous mass extinction, but there is a global decrease in lineage diversification rates 50 Ma that occurs during a period when morphological disparity among fossil acanthomorphs increases sharply. Analysis of clade-specific shifts in diversification rates reveal that the hyperdiversity of living acanthomorphs is highlighted by several rapidly radiating lineages including tunas, gobies, blennies, snailfishes, and Afro-American cichlids. These lineages with high diversification rates are not associated with a single habitat type, such as coral reefs, indicating there is no single explanation for the success of acanthomorphs, as exceptional bouts of diversification have occurred across a wide array of marine and freshwater habitats.


Asunto(s)
Ecosistema , Peces/fisiología , Filogenia , Animales , Secuencia de Bases , Extinción Biológica , Fósiles , Datos de Secuencia Molecular
18.
Proc Natl Acad Sci U S A ; 109(34): 13698-703, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869754

RESUMEN

Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."


Asunto(s)
Peces/genética , Peces/fisiología , Rajidae/genética , Rajidae/fisiología , Animales , Calibración , Evolución Molecular , Fósiles , Datos de Secuencia Molecular , Filogenia , Especificidad de la Especie , Factores de Tiempo
19.
Syst Biol ; 61(6): 1001-27, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22744773

RESUMEN

The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes. Composed of four major clades, Cichlidae, Labridae (wrasses, parrotfishes, and weed whitings), Pomacentridae (damselfishes), and Embiotocidae (surfperches); labroids have been an icon for studies of biodiversity, adaptive radiation, and sexual selection. The success and diversification of labroids have been largely attributed to the presence of a major innovation in the pharyngeal jaw apparatus, pharyngognathy, which is hypothesized to increase feeding capacity and versatility. We present results of large-scale phylogenetic analyses and a survey of pharyngeal jaw functional morphology that allow us to examine the evolution of pharyngognathy in a historical context. Phylogenetic analyses were based on a sample of 188 acanthomorph (spiny-rayed fish) species, primarily percomorphs (perch-like fishes), and DNA sequence data collected from 10 nuclear loci that have been previously used to resolve higher level ray-finned fish relationships. Phylogenies inferred from this dataset using maximum likelihood, Bayesian, and species tree analyses indicate polyphyly of the traditional Labroidei and clearly separate Labridae from the remainder of the traditional labroid lineages (Cichlidae, Embiotocidae, and Pomacentridae). These three "chromide" families grouped within a newly discovered clade of 40 families and more than 4800 species (>27% of percomorphs and >16% of all ray-finned fishes), which we name Ovalentaria for its characteristic demersal, adhesive eggs with chorionic filaments. This fantastically diverse clade includes some of the most species-rich lineages of marine and freshwater fishes, including all representatives of the Cichlidae, Embiotocidae, Pomacentridae, Ambassidae, Gobiesocidae, Grammatidae, Mugilidae, Opistognathidae, Pholidichthyidae, Plesiopidae (including Notograptus), Polycentridae, Pseudochromidae, Atherinomorpha, and Blennioidei. Beyond the discovery of Ovalentaria, this study provides a surprising, but well-supported, hypothesis for a convict-blenny (Pholidichthys) sister group to the charismatic cichlids and new insights into the evolution of pharyngognathy. Bayesian stochastic mapping ancestral state reconstructions indicate that pharyngognathy has evolved at least six times in percomorphs, including four separate origins in members of the former Labroidei, one origin in the Centrogenyidae, and one origin within Beloniformes. Our analyses indicate that all pharyngognathous fishes have a mechanically efficient biting mechanism enabled by the muscular sling and a single lower jaw element. However, a major distinction exists between Labridae, which lacks the widespread, generalized percomorph pharyngeal biting mechanism, and all other pharyngognathous clades, which possess this generalized biting mechanism in addition to pharyngognathy. Our results reveal a remarkable history of pharyngognathy: far from a single origin, it appears to have evolved at least six times, and its status as a major evolutionary innovation is reinforced by it being a synapomorphy for several independent major radiations, including some of the most species rich and ecologically diverse percomorph clades of coral reef and tropical freshwater fishes, Labridae and Cichlidae. [Acanthomorpha; Beloniformes; Centrogenyidae; key innovation; Labroidei; Ovalentaria; pharyngeal jaws; Perciformes.].


Asunto(s)
Maxilares/anatomía & histología , Perciformes , Filogenia , Animales , Datos de Secuencia Molecular , Perciformes/anatomía & histología , Perciformes/clasificación , Perciformes/genética
20.
Mol Phylogenet Evol ; 62(1): 159-73, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22040767

RESUMEN

Neotropical reef fish communities are species-poor compared to those of the Indo-West Pacific. An exception to that pattern is the blenny clade Chaenopsidae, one of only three rocky and coral reef fish families largely endemic to the Neotropics. Within the chaenopsids, the genus Acanthemblemaria is the most species-rich and is characterized by elaborate spinous processes on the skull. Here we construct a species tree using five nuclear markers and compare the results to those from Bayesian and parsimony phylogenetic analyses of 60 morphological characters. The sequence-based species tree conflicted with the morphological phylogenies for Acanthemblemaria, primarily due to the convergence of a suite of characters describing the distribution of spines on the head. However, we were able to resolve some of these conflicts by performing phylogenetic analyses on suites of characters not associated with head spines. By using the species tree as a guide, we used a quantitative method to identify suites of correlated morphological characters that, together, produce the distinctive skull phenotypes found in these fishes. A time calibrated phylogeny with nearly complete taxon sampling provided divergence time estimates that recovered a mid-Miocene origin for the genus, with a temporally and geographically complex pattern of speciation both before and after the closure of the Isthmus of Panama. Some sister taxa are broadly sympatric, but many occur in allopatry. The ability to infer the geography of speciation in Acanthemblemaria is complicated by extinctions, incomplete knowledge of their present geographic ranges and by wide-spread taxa that likely represent cryptic species complexes.


Asunto(s)
Perciformes/clasificación , Animales , Teorema de Bayes , Región del Caribe , Evolución Molecular , Proteínas de Peces/genética , Especiación Genética , Cabeza/anatomía & histología , Modelos Genéticos , Datos de Secuencia Molecular , Perciformes/anatomía & histología , Perciformes/genética , Fenotipo , Filogenia , Filogeografía , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...