Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 255: 107201, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604329

RESUMEN

Reportedly, synthetic drugs such as metronidazole, furazolidone, tinidazole, and quinacrine are used for the treatment of giardiasis but are associated with adverse effects. In this study, we aimed to investigate the in vitro and in vivo effects of eucalyptol (ECT, 1,8 cineole) alone and in combination with metronidazole (MNZ) on Giardia lamblia. The effects of ECT on cell viability, plasma membrane permeability, and gene expression levels of adenylate cyclase (AK) and extracellular signal kinases 1 and 2 (ERK1 and ERK2) in trophozoites of G. lamblia were assessed. In vivo, the effects of ECT alone and in combination with MNZ were assessed on mice infected with G. lamblia. In addition, the gene expression of inflammatory genes (e.g., TNF-α, IL-1ß, and IL-10) and antioxidant genes (catalase (CAT), superoxide dismutase 1 (SOD1), glutathione peroxidase 2 (GPX2)) was determined by real-time PCR. The IC50 values of ECT, MNZ, and ECT+MNZ on trophozoites were 30.2 µg/mL, 21.6 µg/mL, and 8.5 µg/mL, respectively. The estimated Fractional inhibitory concentration index (FICI) values for ECT and MNZ were 0.28 and 0.39, respectively. The application of ECT on G. lamblia trophozoites resulted in a dose-dependent increase in plasma membrane permeability, particularly at concentrations of ½ IC50 and IC50 (P < 0.05). The treatment of infected mice with various doses of ECT, mainly in combination with MNZ for 7 days, resulted in a significant decrease (P < 0.001) in the average number and viability of cysts. ECT, especially when combined with MNZ, caused a significant (P < 0.001) reduction in the expression of TNF-α and IL-6 genes, and an increase (P < 0.05) in the expression of IL-10 genes. ECT alone and mainly in combination with MNZ leads to a significant (P < 0.001) increase in the gene expression of CAT, SOD, and GPX genes. These findings demonstrate that the use of ECT in these doses, even for 14 days, does not have any toxic effects on the function of vital liver and kidney tissues. The study findings confirmed the promising effects of ECT against G. lamblia infection both in vitro and in vivo. Considering the possible mechanisms, ECT increases plasma membrane permeability and reduces the expression levels of infectivity-related genes. In addition, ECT suppresses inflammation and oxidative stress, controlling giardiasis in mice. More studies are needed to clarify these findings.


Asunto(s)
Antiprotozoarios , Giardia lamblia , Giardiasis , Estrés Oxidativo , Animales , Giardia lamblia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Inflamación/tratamiento farmacológico , Metronidazol/farmacología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Femenino , Trofozoítos/efectos de los fármacos , Ratones Endogámicos BALB C , Concentración 50 Inhibidora , Citocinas/metabolismo
2.
Biomed Pharmacother ; 164: 114984, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37321058

RESUMEN

BACKGROUND: We decided to investigate the antileishmanial, cellular mechanisms, and cytotoxic effects of green synthesized Zinc nanoparticles (ZnNPs) alone and combined with glucantime against Leishmania major infection. METHODS: The effect of green synthesized ZnNP on L. major amastigote was studied through macrophage cells. The mRNA expression level of iNOS and IFN-γ followed by the exposure of J774-A1 macrophage cells to ZnNPs was assessed by Real-time PCR. The Caspase-3-like activity of promastigotes exposed to ZnNPs was studied. Effects of ZnNPs alone and combined with glucantime (MA) were studied on cutaneous leishmaniasis in BALB/c mice. RESULTS: ZnNPs displayed the spherical shape with sizes ranging from 30 to 80 nm. The obtained IC50 values for ZnNPs, MA, and ZnNPs + MA were 43.2, 26.3, and 12.6 µg/mL, respectively; indicating the synergistic effects of ZnNPs in combination with MA. CL lesions had completely improved in the mice received with ZnNPs in combination with MA. The mRNA expression level of iNOS, TNF-α, and IFN-γ was dose-dependently (p < 0.01) upregulated; whereas it was downregulated in IL-10. ZnNPs markedly stimulated the caspase-3 activation with no significant toxicity on normal cells. CONCLUSION: Based on these in vitro and in vivo results, green synthesized ZnNPs, mainly along with MA, showed that has the potential to be introduced as a new drug for CL therapy. Triggering of NO production, and inhibition of infectivity rate are revealed as mechanisms of action ZnNPs on L. major. But, supplementary investigations are necessary to clear the efficacy and safety of these agents.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Leishmania major , Leishmaniasis Cutánea , Nanopartículas del Metal , Animales , Ratones , Antimoniato de Meglumina/farmacología , Caspasa 3/genética , Zinc/farmacología , Antiprotozoarios/farmacología , Leishmaniasis Cutánea/tratamiento farmacológico , Antineoplásicos/farmacología , Ratones Endogámicos BALB C
3.
Front Cell Infect Microbiol ; 13: 1161133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249978

RESUMEN

Background: Chemotherapy with synthetic drugs is the principal approach for toxoplasmosis treatment; however, recent studies reported the limitations and adverse side effects of these chemical drugs. Objective: This study aimed to examine the in vitro and in vivo effects of Curcuma longa essential oil (CLE) against the Toxoplasma gondii RH strain. Methods: The in vitro effect of different concentrations of CLE on T. gondii tachyzoites was assessed by cell viability assay. Flow cytometry and apoptosis analysis were performed, and nitric oxide production by CLE was also evaluated in tachyzoites. BALB/c mice were orally treated with various doses (1.25, 2.5, and 5 mg·kg-1·day-1) of CLE for 2 weeks. After the induction of acute toxoplasmosis in the mice, their survival rate and the mean number of peritoneal parasites were checked. The hepatic level of antioxidant enzymes and oxidative stress markers was evaluated by commercial kits. The mRNA expression level of proinflammatory cytokines such as interleukin 1-beta (IL-1ß) and interferon-gamma (IFN-γ) was evaluated by quantitative real-time PCR. Results: CLE, especially at 50 µg/ml, showed potent inhibitory effects on T. gondii tachyzoites. It increased the survival rate (ninth day) and reduced the mean number of peritoneal tachyzoites in the infected mice. CLE dependently increased (p < 0.01) the number of necrotic and apoptotic cells as well as NO production. CLE significantly (p < 0.05) reduced the hepatic level of oxidative stress markers but increased (p < 0.001) the antioxidant enzymes and proinflammatory cytokines in the infected mice, with no important toxicity for vital organs. Conclusion: The findings of this survey revealed the significant in vitro inhibitory effects of CLE on T. gondii tachyzoites. The results also exhibited promising in vivo effects of CLE. CLE improved the survival rate of infected mice and reduced the parasite number in them. Although the mechanisms of action of CLE are not clear, our study demonstrated its beneficial effects on acute toxoplasmosis by strengthening the immune system and reducing inflammation and oxidative stress. Still, more studies are required to confirm these results.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Ratones , Antioxidantes/metabolismo , Curcuma/metabolismo , Sistema Inmunológico/metabolismo , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Ratones Endogámicos BALB C
4.
Acta Parasitol ; 66(3): 797-811, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33770343

RESUMEN

BACKGROUND: In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS: The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS: Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION: In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.


Asunto(s)
Antiprotozoarios , Curcumina , Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Curcumina/farmacología , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico
5.
Biomed Pharmacother ; 136: 111257, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33450495

RESUMEN

BACKGROUND: Surgery remains the preferred treatment option for hydatid cyst (cystic echinococcosis); however, recent studies have demonstrated that the current protoscolicidal agents used during surgery are associated with some adverse side effects such as biliary fibrosis, hepatic necrosis, and cirrhosis. The present study aims to evaluate the in vitro and ex vivo anti-parasitic effects of copper nanoparticles (CuNPs) alone and combined with albendazole on hydatid cyst protoscoleces. METHODS: CuNPs was green synthesized using C. spinosa extract. Various concentrations of CuNPs (250, 500, and 750 mg/mL) alone and combined with albendazole (ALZ, 200 mg/mL) were exposed to protoscoleces collected from the liver fertile hydatid cysts of infected sheep for 5-60 min in vitro and ex vivo. Next, the eosin exclusion test was applied to determine the viability of protoscoleces. Caspase-3 like activity of CuNPs-treated protoscoleces was then evaluated using the colorimetric protease assay Sigma Kit based on the manufacturer's instructions. RESULTS: Scanning electron microscopy (SEM) results showed that the particle size of CuNPs was 17 and 41 nm with the maximum peak at the wavelength of 414 nm. The maximum protoscolicidal activity of CuNPs was observed at the concentration of 750 mg/mL in vitro, so that 73.3 % of protoscoleces were killed after 60 min of exposure. Meanwhile, the mortality of protoscoleces was 100 % after 10 min of exposure to 750 mg/mL of CuNPs along with ALZ (200 mg/mL). Nevertheless, the findings proved that CuNPs even in combination with ALZ required a longer time to kill protoscoleces ex vivo. After 48 h of treating protoscoleces, CuNPs in a dose-dependent manner and at doses of 250, 500, and 750 mg/mL induced the caspase enzyme activation by 20.5 %, 32.3 %, and 36.1 %, respectively. CONCLUSION: The findings of the present investigation showed potent protoscolicidal effects of CuNPs, especially combined with albendazole, which entirely eliminated the parasite after 10-20 min of exposure. The results also showed that although the possible protoscolicidal mechanisms of CuNPs are not clearly understood, the inducing apoptosis through caspases is one of the main protoscolicidal mechanisms of CuNPs. However, supplementary studies, especially in animal models and clinical settings, are needed to approve these results.


Asunto(s)
Albendazol/farmacología , Anticestodos/farmacología , Cobre/farmacología , Equinococosis Hepática/tratamiento farmacológico , Echinococcus granulosus/efectos de los fármacos , Nanopartículas del Metal , Albendazol/química , Animales , Anticestodos/química , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Cobre/química , Composición de Medicamentos , Equinococosis Hepática/parasitología , Echinococcus granulosus/crecimiento & desarrollo , Nanopartículas del Metal/química , Nanotecnología , Proteínas Protozoarias/metabolismo , Oveja Doméstica
6.
Parasite Epidemiol Control ; 11: e00189, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33163635

RESUMEN

BACKGROUND: The preferred treatment for management of toxoplasmosis is the combined use of pyrimethamine and sulfadiazine. However, there are a wide number of adverse side effects with these medications. Recent research has focused on the use of chitosan for the treatment of Toxoplasma gondii infections. This review was performed to obtain a better understanding of the in vivo and in vitro effects of chitosan on T. gondii strains. METHODS: The current study was carried out according to the PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed in five scientific databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar, with date limits of 1992 to December 2019. The search was restricted to articles published in the English language. The words and terms searched were "Toxoplasma gondii", "Chitosan", "nanoparticles" and "anti-toxoplasmosis" with AND or OR. RESULTS: Of 2500 manuscripts, 9 met the eligibility criteria for review. All studies used the RH strain of T. gondii, with Me49 and PRU each included in one study. Five studies (56%) were performed in vivo, one study in vitro and 3 studies included in vivo and in vitro tests. CONCLUSION: Considering the low toxicity and the high inhibitory potency of chitosan against T. gondii, chitosan nanoparticles show potential as an alternative treatment for T. gondii infections.

7.
Ann Med Surg (Lond) ; 54: 85-88, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32405413

RESUMEN

BACKGROUND: In this investigation, the in vivo efficacy and safety of biogenic selenium nanoparticles (SeNPs) are assessed against acute toxoplasmosis caused by Toxoplasma gondii (Sarcocystidae) in the mice. METHODS: Male NMRI mice were orally treated with normal saline (control group) and SeNPs at the doses of 5 and 10 mg/kg once a day for 14 days. On the 15th day, the mice were infected with 104 tachyzoites of T. gondii RH strain by the intraperitoneal route. The mortality rate and parasite load were determined in the infected mice. The mRNA levels of IFN-γ, IL10, IL12, and inducible nitric oxide synthase were also examined in the infected mice by quantitative real-time PCR. RESULTS: The rate of mortality in the infected mice receiving SeNPs at the doses of 5 and 10 mg/kg compared with the mice in the control group was 100% on the 9 and 10 days after the administration. The mean number of tachyzoites in the infected mice receiving SeNPs was significantly lower than that in the control group. No significant difference (p > 0.05) was found in the biochemical parameters between the mice treated with SeNPs and the mice in the control group. The results revealed that mRNA levels significantly improved in the infected mice treated with SeNPs compared with those in the control group. CONCLUSION: Findings of the present investigation showed the considerable efficacy of SeNPs with no important toxicity for curing acute toxoplasmosis in the mice model. However, further studies are needed to clarify the accurate anti-Toxoplasma mechanisms of SeNPs.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25815025

RESUMEN

The present study aims to evaluate the in vitro and in vivo antileishmanial activities of Pistacia khinjuk Stocks (Anacardiaceae) alcoholic extract and to compare its efficacy with a reference drug, meglumine antimoniate (MA, Glucantime), against Leishmania tropica and Leishmania major. This extract (0-100 µg/mL) was evaluated in vitro against promastigote and intracellular amastigote forms of L. tropica (MRHO/IR/75/ER) and then tested on cutaneous leishmaniasis (CL) in male BALB/c mice with L. major to reproduce the antileishmanial activity topically. In vitro, P. khinjuk extract significantly (P < 0.05) inhibited the growth rate of promastigote (IC50 58.6 ± 3.2 µg/mL) and intramacrophage amastigotes (37.3 ± 2.5 µg/mL) of L. tropica as a dose-dependent response. In the in vivo assay, after 30 days of treatment, 75% recovery was observed in the infected mice treated with 30% extract. After treatment of the subgroups with the concentration of 20 and 30% of P. khinjuk extract, mean diameter of lesions was significantly (P < 0.05) reduced. To conclude, the present investigation demonstrated that P. vera extract had in vitro and in vivo effectiveness against L. major. Obtained findings also provide the scientific evidences that natural plants could be used in the traditional medicine for the prevention and treatment of CL.

9.
Korean J Parasitol ; 53(1): 21-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25748705

RESUMEN

Plants used for traditional medicine contain a wide range of substances that can be used to treat various diseases such as infectious diseases. The present study was designed to evaluate the antileishmanial effects of the essential oil and methanolic extract of Myrtus communis against Leishmania tropica on an in vitro model. Antileishmanial effects of essential oil and methanolic extract of M. communis on promastigote forms and their cytotoxic activities against J774 cells were evaluated using MTT assay for 72 hr. In addition, their leishmanicidal activity against amastigote forms was determined in a macrophage model, for 72 hr. Findings showed that the main components of essential oil were α-pinene (24.7%), 1,8-cineole (19.6%), and linalool (12.6%). Findings demonstrated that M. communis, particularly its essential oil, significantly (P<0.05) inhibited the growth rate of promastigote and amastigote forms of L. tropica based on a dose-dependent response. The IC50 values for essential oil and methanolic extract was 8.4 and 28.9 µg/ml against promastigotes, respectively. These values were 11.6 and 40.8 µg/ml against amastigote forms, respectively. Glucantime as control drug also revealed IC50 values of 88.3 and 44.6 µg/ml for promastigotes and amastigotes of L. tropica, respectively. The in vitro assay demonstrated no significant cytotoxicity in J774 cells. However, essential oil indicated a more cytotoxic effect as compared with the methanolic extract of M. communis. The findings of the present study demonstrated that M. communis might be a natural source for production of a new leishmanicidal agent.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania tropica/efectos de los fármacos , Myrtus/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Monoterpenos Acíclicos , Animales , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/toxicidad , Monoterpenos Bicíclicos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclohexanoles/aislamiento & purificación , Ciclohexanoles/farmacología , Ciclohexanoles/toxicidad , Eucaliptol , Concentración 50 Inhibidora , Leishmania tropica/fisiología , Macrófagos/efectos de los fármacos , Ratones , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Monoterpenos/toxicidad , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...