Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1704, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242963

RESUMEN

Giant reed (Arundo donax L.) is one of the most well-studied perennial biomass crops because of its high productivity and potential to store carbon. Yet, little information on controlling weeds in giant reed plantations and their influences on the soil ecosystem is available. In the present study, three different weed control methods, i.e., intercropping (living mulch) with sweet clover (Melilotus officinalis L.), herbicide (glyphosate), and hoeing, were investigated in a 2-year giant reed farm. The intercropping presented significantly higher values (on average) of all the tested soil properties than herbicide and hoeing, except for the catalase activity and pH. The dehydrogenase, phosphatase, and urease activities in the soil under intercropping were higher than the herbicide by 75%, 65%, and 80% (on average), respectively. Also, the soil under intercropping had higher soil organic matter (SOM) and soil respiration than the herbicide by 20% and 25%, respectively. Intercropping also increased the content of N pools, i.e., NO3--N, NH4+-N, Org-N, and Total-N by 517%, 356%, 38%, and 137%, respectively, compared to herbicide. These findings illustrated that controlling weeds in biomass plantations through legume intercropping brings benefits not only to soil properties but also to biomass productivity.


Asunto(s)
Herbicidas , Suelo , Suelo/química , Ecosistema , Nitrógeno/química , Poaceae , Agua
2.
Life (Basel) ; 13(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36836666

RESUMEN

It is necessary to develop and deploy novel protein production to allow the establishment of a sustainable supply for both humans and animals, given the ongoing expansion of protein demand to meet the future needs of the increased world population and high living standards. In addition to plant seeds, green biomass from dedicated crops or green agricultural waste is also available as an alternative source to fulfill the protein and nutrient needs of humans and animals. The development of extraction and precipitation methods (such as microwave coagulation) for chloroplast and cytoplasmic proteins, which constitute the bulk of leaf protein, will allow the production of leaf protein concentrates (LPC) and protein isolates (LPI). Obtained LPC serves as a sustainable alternative source of animal-based protein besides being an important source of many vital phytochemicals, including vitamins and substances with nutritional and pharmacological effects. Along with it, the production of LPC, directly or indirectly, supports sustainability and circular economy concepts. However, the quantity and quality of LPC largely depend on several factors, including plant species, extraction and precipitation techniques, harvest time, and growing season. This paper provides an overview of the history of green biomass-derived protein from the early green fodder mill concept by Károly Ereky to the state-of-art of green-based protein utilization. It highlights potential approaches for enhancing LPC production, including dedicated plant species, associated extraction methods, selection of optimal technologies, and best combination approaches for improving leaf protein isolation.

3.
Heliyon ; 8(11): e11655, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36444258

RESUMEN

Recently, leaf protein concentrate (LPC) has gained increased attention in response to the constantly growing protein demand. Green biorefineries can become more economical by valorizing their by-products and reducing environmental risks. The current study describes the variations in the antioxidant capacity and phytochemical composition of a liquid by-product (referred to as brown juice (BJ)) obtained during the extraction of leaf protein concentrate (LPC) from the fresh biomass of alfalfa (Medicago sativa L.). Four varieties of alfalfa were investigated during three harvest times, i.e., August 2017 (first harvest), September 2017 (second harvest), and June 2018 (third harvest). Also, the fresh BJ was lacto-fermented to extend its preservation period but also modifying its composition. The results of different general phytochemical composition analyses and antioxidant assays revealed similar tendencies across different alfalfa varieties and harvest times. Most of the phytochemicals in the BJ identified by HPLC-MS/MS can be classified as flavonoids/flavonoid derivatives, e.g., apigenin, naringenin, luteolin, formononetin. Substantially, the lacto-fermentation process induced a switch into aglycones, e.g., apigenin content increased by an order of magnitude, while apigenin-7-O-glucuronide content was halved after lacto-fermentation. Additionally, several B vitamins were detected, including B2, B3, and B7. These results could provide a basis for various ways of industrial valorization but need to be strengthened by data generated from large-scale production.

4.
Foods ; 11(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36230113

RESUMEN

Green biorefining uses fresh lignocellulosic biomass to produce green juice and pressed fibre fractions by wet fractionation. The latter is a byproduct, accounting for 25-32% of the starting material. In this study, the composition (glucan, xylan, arabinan, lignin, total phenol, flavonoid and protein) of pressed fibres obtained from four alfalfa, four soy and one broccoli varieties were determined at different harvest times. Statistical analyses were performed to determine the effects of harvest time and variety on the measured parameters. In most of the cases, there were interactions between the effects of harvest time and variety. Among alfalfa varieties, OLI1 had the highest carbohydrate (52.09 w/w%) and DIM3 had the lowest lignin (13.02 w/w%) content. In the case of soy, the ADV2 variety had the highest carbohydrate (53.47 w/w%) and PK1 had the lowest lignin (11.14 w/w%) content. Broccoli contained low amounts of carbohydrates (44.94 w/w%) and lignin (10.16 w/w%). The phenolic and flavonoid contents were similar for each species, but the protein content was the highest in alfalfa fibre. Based on these data, the most promising species, varieties and harvesting time can be selected in terms of a certain component that could be essential to produce functional foods with enhanced nutritional value.

5.
Foods ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010418

RESUMEN

The main objective of this study was to increase the economic value of broccoli green agro-waste using three wet fractionation methods in the shadow of green biorefinery and the circular economy. Product candidates were obtained directly by using a mechanical press, and indirectly by using microwave coagulation or via lactic acid fermentation of green juice. The leaf protein concentrates (LPC) fractions displayed significantly higher dry matter content and crude protein content (34-39 m/m% on average) than the green juice fraction (27.4 m/m% on average), without considerable changes in the amino acids composition ratio. UHPLC-ESI-ORBITRAP-MS/MS analysis showed that kaemferol and quercetin are the most abundant flavonols, forming complexes with glycosides and hydroxycinnamic acids in green juice. Lacto-ermentation induced a considerable increase in the quantity of quercetin (48.75 µg·g-1 dry weight) and kaempferol aglycons (895.26 µg·g-1 dry weight) of LPC. In contrast, chlorogenic acid isomers and sulforaphane disappeared from LPC after lactic acid fermentation, while microwave treatment did not cause significant differences. These results confirm that both microwave treatment and lacto-fermentation coagulate and concentrate most of the soluble proteins. Also, these two processes affect the amount of valuable phytochemicals differently, so it should be considered when setting the goals.

6.
Plants (Basel) ; 10(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071906

RESUMEN

Organic and ecological farming programs require new and efficient biostimulants with beneficial properties for the sustainable and safe production of seedlings and ornamental plants. We examined the effect of non-fermented and lacto-fermented alfalfa brown juice (BJ) on seed germination and the vegetative, physiological, and anatomical properties of French marigold (Tagetes patula L. 'Csemo') plants which were treated with 0.5-10% fermented and non-fermented BJ, with tap water applied as a control. Applying 0.5% fermented BJ significantly improved seed germination compared with non-fermented BJ, resulting in an increase of 9.6, 11.2, 10.9, and 41.7% in the final germination percent, germination rate index, germination index, and vigor index, respectively. In addition, it increased the root and shoot length by 7.9 and 16.1%, respectively, root and shoot dry mass by 20 and 47.6%, respectively, and the number of leaves by 28.8% compared to the control. Furthermore, an increase in contents of water-soluble phenol, chlorophyll a and b, and carotenoid was reported upon the application of 0.5% fermented BJ, while peroxidase activity decreased. Our results prove that alfalfa BJ can be enrolled as a biostimulant as part of the circular farming approach which supports the sustainable horticultural practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...