Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361681

RESUMEN

Aripiprazole is an atypical antipsychotic drug, which is prescribed for many psychiatric diseases such as schizophrenia and mania in bipolar disorder. It primarily acts as an agonist of dopaminergic and other G-protein coupled receptors. So far, an interaction with ligand- or voltage-gated ion channels has been classified as weak. Meanwhile, we identified aripiprazole in a preliminary test as a potent blocker of voltage-gated sodium channels. Here, we present a detailed analysis about the interaction of aripiprazole with the dominant voltage-gated sodium channel of heart muscle (hNav1.5). Electrophysiological experiments were performed by means of the patch clamp technique at human heart muscle sodium channels (hNav1.5), heterologously expressed in human TsA cells. Aripiprazole inhibits the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state is weak with an extrapolated Kr of about 55 µM. By contrast, the interaction with the inactivated state is strong. The affinities for the fast and slow inactivated state are in the low micromolar range (0.5-1 µM). Kinetic studies indicate that block development for the inactivated state must be described with a fast (ms) and a slow (s) time constant. Even though the time constants differ by a factor of about 50, the resulting affinity constants were nearly identical (in the range of 0.5 µM). Besides this, aripirazole also interacts with the open state of the channel. Using an inactivation deficit mutant, an affinity of about 1 µM was estimated. In summary, aripiprazole inhibits voltage-gated sodium channels at low micromolar concentrations. This property might add to its possible anticancer and neuroprotective properties.


Asunto(s)
Canales de Sodio Activados por Voltaje , Humanos , Aripiprazol/farmacología , Cinética , Técnicas de Placa-Clamp , Miocardio , Bloqueadores de los Canales de Sodio/farmacología
2.
Cells ; 11(20)2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291163

RESUMEN

The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.


Asunto(s)
Anafilatoxinas , Neutrófilos , Complemento C5a des-Arginina , Especies Reactivas de Oxígeno , Anafilatoxinas/análisis , Anafilatoxinas/farmacología , Proteínas del Sistema Complemento , Glucosa
3.
Front Pharmacol ; 12: 737637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744721

RESUMEN

Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 µM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.

4.
Biomedicines ; 9(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34829733

RESUMEN

Neutrophils provide rapid and efficient defense mechanisms against invading pathogens. Upon stimulation with proinflammatory mediators, including complement factors and bacterial peptides, neutrophils respond with changes in their membrane potential, intracellular pH, and cellular size. This study provides an approach to quantify these important changes simultaneously using multiparametric flow cytometry, thereby revealing a typical sequence of neutrophil activation consisting of depolarization, alkalization, and increase in cellular size. Additionally, the time resolution of the flow cytometric measurement is improved in order to allow changes that occur within seconds to be monitored, and thus to enhance the kinetic analysis of the neutrophil response. The method is appropriate for the reliable semiquantitative detection of small variations with respect to an increase, no change, and decrease in those parameters as demonstrated by the screening of various proinflammatory mediators. As a translational outlook, the findings are put into context in inflammatory conditions in vitro as well as in a clinically relevant whole blood model of endotoxemia. Taken together, the multiparametric analysis of neutrophil responsiveness regarding depolarization, alkalization, and changes in cellular size may contribute to a better understanding of neutrophils in health and disease, thus potentially yielding innovative mechanistic insights and possible novel diagnostic and/or prognostic approaches.

5.
Front Immunol ; 12: 642867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796110

RESUMEN

Platelet-activating factor (PAF) is an important mediator of the systemic inflammatory response. In the case of sepsis, proper activation and function of neutrophils as the first line of cellular defense are based on a well-balanced physiological response. However, little is known about the role of PAF in cellular changes of neutrophils during sepsis. Therefore, this study investigates the reaction patterns of neutrophils induced by PAF with a focus on membrane potential (MP), intracellular pH, and cellular swelling under physiological and pathophysiological conditions and hypothesizes that the PAF-mediated response of granulocytes is altered during sepsis. The cellular response of granulocytes including MP, intracellular pH, cellular swelling, and other activation markers were analyzed by multiparametric flow cytometry. In addition, the chemotactic activity and the formation of platelet-neutrophil complexes after exposure to PAF were investigated. The changes of the (electro-)physiological response features were translationally verified in a human ex vivo whole blood model of endotoxemia as well as during polymicrobial porcine sepsis. In neutrophils from healthy human donors, PAF elicited a rapid depolarization, an intracellular alkalization, and an increase in cell size in a time- and dose-dependent manner. Mechanistically, the alkalization was dependent on sodium-proton exchanger 1 (NHE1) activity, while the change in cellular shape was sodium flux- but only partially NHE1-dependent. In a pathophysiological altered environment, the PAF-induced response of neutrophils was modulated. Acidifying the extracellular pH in vitro enhanced PAF-mediated depolarization, whereas the increases in cell size and intracellular pH were largely unaffected. Ex vivo exposure of human whole blood to lipopolysaccharide diminished the PAF-induced intracellular alkalization and the change in neutrophil size. During experimental porcine sepsis, depolarization of the MP was significantly impaired. Additionally, there was a trend for increased cellular swelling, whereas intracellular alkalization remained stable. Overall, an impaired (electro-)physiological response of neutrophils to PAF stimulation represents a cellular hallmark of those cells challenged during systemic inflammation. Furthermore, this altered response may be indicative of and causative for the development of neutrophil dysfunction during sepsis.


Asunto(s)
Activación Neutrófila/efectos de los fármacos , Factor de Activación Plaquetaria/farmacología , Sepsis/inmunología , Animales , Endotoxemia/inmunología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Inflamación/inmunología , Masculino , Potenciales de la Membrana , NADPH Oxidasa 2/fisiología , Activación Neutrófila/fisiología , Porcinos
6.
Front Pharmacol ; 12: 622489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732157

RESUMEN

Atomoxetine, a neuroactive drug, is approved for the treatment of attention-deficit/hyperactivity disorder (ADHD). It is primarily known as a high affinity blocker of the noradrenaline transporter, whereby its application leads to an increased level of the corresponding neurotransmitter in different brain regions. However, the concentrations used to obtain clinical effects are much higher than those which are required to block the transporter system. Thus, off-target effects are likely to occur. In this way, we previously identified atomoxetine as blocker of NMDA receptors. As many psychotropic drugs give rise to sudden death of cardiac origin, we now tested the hypothesis whether atomoxetine also interacts with voltage-gated sodium channels of heart muscle type in clinically relevant concentrations. Electrophysiological experiments were performed by means of the patch-clamp technique at human heart muscle sodium channels (hNav1.5) heterogeneously expressed in human embryonic kidney cells. Atomoxetine inhibited sodium channels in a state- and use-dependent manner. Atomoxetine had only a weak affinity for the resting state of the hNav1.5 (Kr: ∼ 120 µM). The efficacy of atomoxetine strongly increased with membrane depolarization, indicating that the inactivated state is an important target. A hallmark of this drug was its slow interaction. By use of different experimental settings, we concluded that the interaction occurs with the slow inactivated state as well as by slow kinetics with the fast-inactivated state. Half-maximal effective concentrations (2-3 µM) were well within the concentration range found in plasma of treated patients. Atomoxetine also interacted with the open channel. However, the interaction was not fast enough to accelerate the time constant of fast inactivation. Nevertheless, when using the inactivation-deficient hNav1.5_I408W_L409C_A410W mutant, we found that the persistent late current was blocked half maximal at about 3 µM atomoxetine. The interaction most probably occurred via the local anesthetic binding site. Atomoxetine inhibited sodium channels at a similar concentration as it is used for the treatment of ADHD. Due to its slow interaction and by inhibiting the late current, it potentially exerts antiarrhythmic properties.

7.
Sci Rep ; 8(1): 5527, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615749

RESUMEN

Due to the highly invasive nature of Glioblastoma (GB), complete surgical resection is not feasible, while motile tumour cells are often associated with several specific brain structures that enhance treatment-resistance. Here, we investigate the therapeutic potential of Disulfiram and Carbenoxolone, that inhibit two distinct interactions between GB and the brain tissue microenvironment: stress-induced cell-matrix adhesion and gap junction mediated cell-cell communication, respectively. Increase in cell numbers of tumour-initiating cells, which are cultured in suspension as cell clusters, and adherent differentiated cells can be blocked to a similar extent by Carbenoxolone, as both cell populations form gap junctions, but the adherent differentiated cells are much more sensitive to Disulfiram treatment, which - via modulation of NF-κB signalling - interferes with cell-substrate adhesion. Interestingly, inducing adhesion in tumour-initiating cells without differentiating them does not sensitize for Disulfiram. Importantly, combining Disulfiram, Carbenoxolone and the standard chemotherapeutic drug Temozolomide reduces tumour size in an orthotopic mouse model. Isolating GB cells from their direct environment within the brain represents an important addition to current therapeutic approaches. The blockage of cellular interactions via the clinically relevant substances Disulfiram and Carbenoxolone, has distinct effects on different cell populations within a tumour, potentially reducing motility and/or resistance to apoptosis.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Carbenoxolona/farmacología , Disulfiram/farmacología , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Animales , Antiulcerosos/farmacología , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Adhesión Celular , Proliferación Celular , Quimioterapia Combinada , Perfilación de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Exp Neurol ; 304: 1-13, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29466703

RESUMEN

One major pathophysiological hallmark of Alzheimer's disease (AD) is senile plaques composed of amyloid ß (Aß). In the amyloidogenic pathway, cleavage of the amyloid precursor protein (APP) is shifted towards Aß production and soluble APPß (sAPPß) levels. Aß is known to impair synaptic function; however, much less is known about the physiological functions of sAPPß. The neurotrophic properties of sAPPα, derived from the non-amyloidogenic pathway of APP cleavage, are well-established, whereas only a few, conflicting studies on sAPPß exist. The intracellular pathways of sAPPß are largely unknown. Since sAPPß is generated alongside Aß by ß-secretase (BACE1) cleavage, we tested the hypothesis that sAPPß effects differ from sAPPα effects as a neurotrophic factor. We therefore performed a head-to-head comparison of both mammalian recombinant peptides in developing primary hippocampal neurons (PHN). We found that sAPPα significantly increases axon length (p = 0.0002) and that both sAPPα and sAPPß increase neurite number (p < 0.0001) of PHN at 7 days in culture (DIV7) but not at DIV4. Moreover, both sAPPα- and sAPPß-treated neurons showed a higher neuritic complexity in Sholl analysis. The number of glutamatergic synapses (p < 0.0001), as well as layer thickness of postsynaptic densities (PSDs), were significantly increased, and GABAergic synapses decreased upon sAPP overexpression in PHN. Furthermore, we showed that sAPPα enhances ERK and CREB1 phosphorylation upon glutamate stimulation at DIV7, but not DIV4 or DIV14. These neurotrophic effects are further associated with increased glutamate sensitivity and CREB1-signaling. Finally, we found that sAPPα levels are significantly reduced in brain homogenates of AD patients compared to control subjects. Taken together, our data indicate critical stage-dependent roles of sAPPs in the developing glutamatergic system in vitro, which might help to understand deleterious consequences of altered APP shedding in AD patients, beyond Aß pathophysiology.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Hipocampo/patología , Homeostasis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Transducción de Señal/fisiología
9.
Curr Clin Pharmacol ; 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22283614

RESUMEN

Recent investigations of pain mechanisms leading to the induction and maintenance of long-term potentiation (LTP) in the spinal cord have identified a huge number of molecular targets that might be appropriate for therapeutically intervention. In this short review we summarize recently published studies investigating drugs that affect LTP in the spinal cord. After providing an overview of spinal pain pathways and of the respective methods for their investigation, molecular targets for possible pharmacological interventions are discussed.

10.
Anesthesiology ; 115(2): 398-407, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21753726

RESUMEN

BACKGROUND: Both central sensitization after peripheral tissue injury and the development of opioid tolerance involve activation of N-methyl-D-aspartate (NMDA) receptors. At subanesthetic doses the NMDA receptor antagonist xenon suppresses pain-evoked sensitization of pain-processing areas in the central nervous system. Although numerous studies describe the effect of NMDA receptor antagonists on postoperative pain, clinical studies elucidating their intraoperative analgesic potency when applied in a low dosage are still largely missing. METHODS: To analyze the analgesic effect of low-dose xenon using new application methods, the authors tested nasally applied xenon as an add-on treatment for analgesia in 40 patients undergoing abdominal hysterectomy. Within a randomized double-blind placebo-controlled study design, intraoperative and postoperative requirement of opioids as well as postoperative subjective experiences of pain were measured as primary outcome variables. RESULTS: Intranasal application of xenon significantly reduced intraoperative opioid requirement (mean difference [MD] -2.0 µg/min; 95% CI [CI95]-0.53 to -3.51, Bonferroni correction adjusted P value [pcorr]= 0.028) without relevant side effects and significantly reduced postoperative pain (MD -1.34 points on an 11-point rating scale; CI95 -0.60 to -2.09, pcorr = 0.002). However, postoperative morphine consumption (MD -8.8 µg/min; CI95 1.2 to -18.8, pcorr = 0.24) was not significantly reduced in this study. CONCLUSIONS: Low-dose xenon significantly reduces intraoperative analgesic use and postoperative pain perception. Because NMDA receptor antagonists suppress central sensitization, prevent the development of opioid tolerance, and reduce postoperative pain, the intraoperative usage of NMDA receptor antagonists such as xenon is suggested to improve effectiveness of pain management within a concept of multimodal analgesia.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Dolor Postoperatorio/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Xenón/administración & dosificación , Administración Intranasal , Adulto , Analgésicos Opioides/uso terapéutico , Método Doble Ciego , Femenino , Humanos , Histerectomía , Persona de Mediana Edad , Receptores de N-Metil-D-Aspartato/fisiología , Xenón/uso terapéutico
11.
J Biol Chem ; 278(22): 20192-5, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12660236

RESUMEN

The neurotransmitter gamma-aminobutyric acid (GABA), released by hypothalamic neurons as well as by growth hormone- (GH) and adrenocorticotropin-producing cells, is a regulator of pituitary endocrine functions. Different classes of GABA receptors may be involved. In this study, we report that GH cells, isolated by laser microdissection from rat pituitary slices, possess the GABA-C receptor subunit rho2. We also demonstrate that in the GH adenoma cell line, GH3, GABA-C receptor subunits are not only expressed but also form functional channels. GABA-induced Cl- currents were recorded using the whole cell patch clamp technique; these currents were insensitive to bicuculline (a GABA-A antagonist) but could be induced by the GABA-C agonist cis-4-aminocrotonic acid. In contrast to typical GABA-C mediated currents in neurons, they quickly desensitized. Ca2+i recordings were also performed on GH3 cells. The application of either GABA or cis-4-aminocrotonic acid led to Ca2+ transients of similar amplitude, indicating that the activation of GABA-C receptors in GH3 cells may cause membrane depolarization, opening of voltage-gated Ca2+ channels, and a subsequent Ca2+ influx. Our results point at a role for GABA in pituitary GH cells and disclose an additional pathway to the one known via GABA-B receptors.


Asunto(s)
Hormona del Crecimiento/metabolismo , Hipófisis/metabolismo , Receptores de GABA/fisiología , Animales , Secuencia de Bases , Calcio/metabolismo , Línea Celular , Cartilla de ADN , Inmunohistoquímica , Técnicas de Placa-Clamp , Hipófisis/citología , Ratas , Ratas Sprague-Dawley , Receptores de GABA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...