Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120076, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174678

RESUMEN

The multicomponent glycinium maleate single crystal was grown by the slow evaporation method. The crystal was submitted to pressures ranging from 1 atm to 5.6 GPa and Raman spectroscopy was used as a spectroscopic probe. The modifications of relative intensity bands related to the lattice modes at 0.3 GPa were associated with rearrangements of hydrogen bonds. Moreover, between 1.7 and 4.8 GPa the Raman results indicate that the crystal experience a long structural phase transition, which was confirmed by PCA analysis. DFT calculations gave us more precision in the assignments of modes. The behavior of the internal modes under pressure showed that the maleic acid molecule undergoes greater modifications than glycine amino acid. All observed modifications were reversible when the pressure was released.


Asunto(s)
Maleatos , Espectrometría Raman , Enlace de Hidrógeno , Transición de Fase
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118734, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32810777

RESUMEN

The polymorphism is a characteristic of several active principles, and can affect the bioavailability of a drug. Among the drugs used in the treatment of heart diseases, captopril is one of the most widely used in the world. Despite the knowledge of vibrational properties of captopril under high temperature and under high pressure, a lack of information impedes the understanding of the substance in the crystal form at low temperatures. In this research, we investigated the vibrational properties of captopril crystals under cryogenic conditions in the 300-8 K interval using Raman spectroscopy. By observing the behavior of the inter- and intra-molecular vibrations it was possible to infer that the captopril molecules suffered a rearranging into the unit cell due slight orientational changes mainly involving CH⋯O hydrogen bonds. The phenomenon occurs in a large temperature range. However, the observed changes do not suggest the occurrence of a structural phase transition and the Raman spectra indicate that the trans conformation is recorded down to the lowest temperature available in the experiments.


Asunto(s)
Preparaciones Farmacéuticas , Espectrometría Raman , Captopril , Temperatura , Vibración
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 161: 109-14, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26967511

RESUMEN

Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm(-1) point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...