Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Vet Sci ; 9: 923878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812884

RESUMEN

Vesicular disease caused by Senecavirus A (SVA) is clinically indistinguishable from foot-and-mouth disease (FMD) and other vesicular diseases of swine. When a vesicle is observed in FMD-free countries, a costly and time-consuming foreign animal disease investigation (FADI) is performed to rule out FMD. Recently, there has been an increase in the number of FADIs and SVA positive samples at slaughter plants in the U.S. The objectives of this investigation were to: (1) describe the environmental burden of SVA in sow slaughter plants; (2) determine whether there was a correlation between PCR diagnostics, virus isolation (VI), and swine bioassay results; and (3) phylogenetically characterize the genetic diversity of contemporary SVA isolates. Environmental swabs were collected from three sow slaughter plants (Plants 1-3) and one market-weight slaughter plant (Plant 4) between June to December 2020. Of the 426 samples taken from Plants 1-3, 304 samples were PCR positive and 107 were VI positive. There was no detection of SVA by PCR or VI at Plant 4. SVA positive samples were most frequently found in the summer (78.3% June-September, vs. 59.4% October-December), with a peak at 85% in August. Eighteen PCR positive environmental samples with a range of Ct values were selected for a swine bioassay: a single sample infected piglets (n = 2). A random subset of the PCR positive samples was sequenced; and phylogenetic analysis demonstrated co-circulation and divergence of two genetically distinct groups of SVA. These data demonstrate that SVA was frequently found in the environment of sow slaughter plants, but environmental persistence and diagnostic detection was not indicative of whether a sampled was infectious to swine. Consequently, a more detailed understanding of the epidemiology of SVA and its environmental persistence in the marketing chain is necessary to reduce the number of FADIs and aide in the development of control measures to reduce the spread of SVA.

2.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356005

RESUMEN

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Asunto(s)
Arteriviridae/clasificación , Arteriviridae/genética , Filogenia , Animales , Arteriviridae/ultraestructura , Arterivirus/clasificación , Arterivirus/genética , Endocitosis , Genoma Viral , Primates , Infecciones por Virus ARN , Proteínas Virales/genética , Virión/clasificación , Virión/genética , Virión/ultraestructura , Acoplamiento Viral , Replicación Viral
3.
Database (Oxford) ; 20212021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35165687

RESUMEN

Veterinary diagnostic laboratories derive thousands of nucleotide sequences from clinical samples of swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A and swine enteric coronaviruses. In addition, next generation sequencing has resulted in the rapid production of full-length genomes. Presently, sequence data are released to diagnostic clients but are not publicly available as data may be associated with sensitive information. However, these data can be used for field-relevant vaccines; determining where and when pathogens are spreading; have relevance to research in molecular and comparative virology; and are a component in pandemic preparedness efforts. We have developed a centralized sequence database that integrates private clinical data using PRRSV data as an exemplar, alongside publicly available genomic information. We implemented the Tripal toolkit, a collection of Drupal modules that are used to manage, visualize and disseminate biological data stored within the Chado database schema. New sequences sourced from diagnostic laboratories contain: genomic information; date of collection; collection location; and a unique identifier. Users can download annotated genomic sequences using a customized search interface that incorporates data mined from published literature; search for similar sequences using BLAST-based tools; and explore annotated reference genomes. Additionally, custom annotation pipelines have determined species, the location of open reading frames and nonstructural proteins and the occurrence of putative frame shifts. Eighteen swine pathogens have been curated. The database provides researchers access to sequences discovered by veterinary diagnosticians, allowing for epidemiological and comparative virology studies. The result will be a better understanding on the emergence of novel swine viruses and how these novel strains are disseminated in the USA and abroad. Database URLhttps://swinepathogendb.org.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Genómica , Humanos , Laboratorios , Sistemas de Lectura Abierta , Filogenia , Porcinos , Estados Unidos
4.
Vet Microbiol ; 253: 108946, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341466

RESUMEN

Senecavirus A (SVA) was discovered as a cell culture contaminant in 2002, and multiple attempts to experimentally reproduce disease were unsuccessful. Field reports of porcine idiopathic vesicular disease (PIVD) cases testing PCR positive for SVA in addition to outbreaks of PIVD in Brazil and the United States in 2015 suggested SVA was a causative agent, which has now been consistently demonstrated experimentally. Ease of experimental reproduction of disease with contemporary strains of SVA raised questions concerning the difficulty of reproducing vesicular disease with historical isolates. The following study was conducted to compare the pathogenicity of SVA between historical and contemporary isolates in growing pigs. Six groups of pigs (n = 8) were intranasally inoculated with the following SVA isolates: SVV001/2002, CAN/2011, HI/2012, IA/2015, NC/2015, SD/2015. All isolates induced vesicular disease in at least half of the inoculated pigs from each group. All pigs replicated virus as demonstrated by serum and/or swab samples positive for SVA by quantitative PCR. Pig sera tested by virus neutralization assay demonstrated cross-neutralizing antibodies against all viruses utilized in the study. Cross-neutralizing antibodies from pigs inoculated with historical isolates were lower than those pigs that were inoculated with contemporary isolates. Phylogenetic analysis revealed two clades with SVV001/2002 being in a separate clade compared to the other five isolates. Although differences in the infection kinetics and sequences of these six isolates were found, clinical presentation of vesicular disease was similar between both historical and contemporary isolates.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Infecciones por Picornaviridae/veterinaria , Picornaviridae/genética , Picornaviridae/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Antivirales/sangre , Brasil/epidemiología , Línea Celular , Brotes de Enfermedades , Genoma Viral , Historia del Siglo XX , Historia del Siglo XXI , Masculino , Filogenia , Picornaviridae/clasificación , Picornaviridae/patogenicidad , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/historia , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/historia , Estados Unidos/epidemiología
5.
Virology ; 553: 35-45, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220618

RESUMEN

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Asunto(s)
ADN Complementario/aislamiento & purificación , Deltacoronavirus/genética , Porcinos/virología , Animales , Células Clonales , Infecciones por Coronavirus/patología , Deltacoronavirus/patogenicidad , Deltacoronavirus/fisiología , Endorribonucleasas/fisiología , Interferones/antagonistas & inhibidores , Replicación Viral
6.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554697

RESUMEN

Coronaviruses (CoVs) have repeatedly emerged from wildlife hosts and infected humans and livestock animals to cause epidemics with significant morbidity and mortality. CoVs infect various organs, including respiratory and enteric systems, as exemplified by newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The constellation of viral factors that contribute to developing enteric disease remains elusive. Here, we investigated CoV interferon antagonists for their contribution to enteric pathogenesis. Using an infectious clone of an enteric CoV, porcine epidemic diarrhea virus (icPEDV), we generated viruses with inactive versions of interferon antagonist nonstructural protein 1 (nsp1), nsp15, and nsp16 individually or combined into one virus designated icPEDV-mut4. Interferon-responsive PK1 cells were infected with these viruses and produced higher levels of interferon responses than were seen with wild-type icPEDV infection. icPEDV-mut4 elicited robust interferon responses and was severely impaired for replication in PK1 cells. To evaluate viral pathogenesis, piglets were infected with either icPEDV or icPEDV-mut4. While the icPEDV-infected piglets exhibited clinical disease, the icPEDV-mut4-infected piglets showed no clinical symptoms and exhibited normal intestinal pathology at day 2 postinfection. icPEDV-mut4 replicated in the intestinal tract, as revealed by detection of viral RNA in fecal swabs, with sequence analysis documenting genetic stability of the input strain. Importantly, icPEDV-mut4 infection elicited IgG and neutralizing antibody responses to PEDV. These results identify nsp1, nsp15, and nsp16 as virulence factors that contribute to the development of PEDV-induced diarrhea in swine. Inactivation of these CoV interferon antagonists is a rational approach for generating candidate vaccines to prevent disease and spread of enteric CoVs, including SARS-CoV-2.IMPORTANCE Emerging coronaviruses, including SARS-CoV-2 and porcine CoVs, can infect enterocytes, cause diarrhea, and be shed in the feces. New approaches are needed to understand enteric pathogenesis and to develop vaccines and therapeutics to prevent the spread of these viruses. Here, we exploited a reverse genetic system for an enteric CoV, porcine epidemic diarrhea virus (PEDV), and outline an approach of genetically inactivating highly conserved viral factors known to limit the host innate immune response to infection. Our report reveals that generating PEDV with inactive versions of three viral interferon antagonists, nonstructural proteins 1, 15, and 16, results in a highly attenuated virus that does not cause diarrhea in animals and elicits a neutralizing antibody response in virus-infected animals. This strategy may be useful for generating live attenuated vaccine candidates that prevent disease and fecal spread of enteric CoVs, including SARS-CoV-2.


Asunto(s)
Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Interferones/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Betacoronavirus/inmunología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/prevención & control , Diarrea/patología , Diarrea/virología , Modelos Animales de Enfermedad , Endorribonucleasas/antagonistas & inhibidores , Heces/virología , Íleon/patología , Inmunidad Innata , Yeyuno/patología , Pandemias , Neumonía Viral/inmunología , Virus de la Diarrea Epidémica Porcina/genética , ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/virología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
7.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728254

RESUMEN

Identifying viral antagonists of innate immunity and determining if they contribute to pathogenesis are critical for developing effective strategies to control emerging viruses. Previously, we reported that an endoribonuclease (EndoU) encoded by murine coronavirus plays a pivotal role in evasion of host innate immune defenses in macrophages. Here, we asked if the EndoU activity of porcine epidemic diarrhea coronavirus (PEDV), which causes acute diarrhea in swine, plays a role in antagonizing the innate response in porcine epithelial cells and macrophages, the sites of viral replication. We constructed an infectious clone of PEDV-Colorado strain (icPEDV-wt) and an EndoU-mutant PEDV (icPEDV-EnUmt) by changing the codon for a catalytic histidine residue of EndoU to alanine (His226Ala). We found that both icPEDV-wt and icPEDV-EnUmt propagated efficiently in interferon (IFN)-deficient Vero cells. In contrast, the propagation of icPEDV-EnUmt was impaired in porcine epithelial cells (LLC-PK1), where we detected an early and robust transcriptional activation of type I and type III IFNs. Infection of piglets with the parental Colorado strain, icPEDV-wt, or icPEDV-EnUmt revealed that all viruses replicated in the gut and induced diarrhea; however, there was reduced viral shedding and mortality in the icPEDV-EnUmt-infected animals. These results demonstrate that EndoU activity is not required for PEDV replication in immortalized, IFN-deficient Vero cells, but is important for suppressing the IFN response in epithelial cells and macrophages, which facilitates replication, shedding, and pathogenesis in vivo We conclude that PEDV EndoU activity is a key virulence factor that suppresses both type I and type III IFN responses.IMPORTANCE Coronaviruses (CoVs) can emerge from an animal reservoir into a naive host species to cause pandemic respiratory or gastrointestinal diseases with significant mortality in humans or domestic animals. Porcine epidemic diarrhea virus (PEDV), an alphacoronavirus (alpha-CoV), infects gut epithelial cells and macrophages, inducing diarrhea and resulting in high mortality in piglets. How PEDV suppresses the innate immune response was unknown. We found that mutating a viral endoribonuclease, EndoU, results in a virus that activates both the type I interferon response and the type III interferon response in macrophages and epithelial cells. This activation of interferon resulted in limited viral replication in epithelial cell cultures and was associated with reduced virus shedding and mortality in piglets. This study reveals a role for EndoU activity as a virulence factor in PEDV infection and provides an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.


Asunto(s)
Infecciones por Coronavirus , Endorribonucleasas , Interferón Tipo I/inmunología , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Proteínas Virales , Animales , Línea Celular , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Endorribonucleasas/genética , Endorribonucleasas/inmunología , Interferón Tipo I/genética , Virus de la Diarrea Epidémica Porcina/enzimología , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/inmunología , Porcinos , Enfermedades de los Porcinos/enzimología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Proteínas Virales/genética , Proteínas Virales/inmunología , Esparcimiento de Virus/inmunología
8.
ACS Infect Dis ; 4(9): 1316-1326, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29856201

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a widespread economically devastating disease caused by PRRS virus (PRRSV). First recognized in the late 1980s, PRRSV is known to undergo somatic mutations and high frequency viral recombination, which leads to many diverse viral strains. This includes differences within viral virulence factors, such as the viral ovarian tumor domain (vOTU) protease, also referred to as the papain-like protease 2. These proteases down-regulate innate immunity by deubiquitinating proteins targeted by the cell for further processing and potentially also acting against interferon-stimulated genes (ISGs). Recently, vOTUs from vaccine derivative Ingelvac PRRS modified live virus (MLV) and the highly pathogenic PRRSV strain JXwn06 were biochemically characterized, revealing a marked difference in activity toward K63 linked polyubiquitin chains and a limited preference for interferon-stimulated gene product 15 (ISG15) substrates. To extend our research, the vOTUs from NADC31 (low virulence) and SDSU73 (moderately virulent) were biochemically characterized using a myriad of ubiquitin and ISG15 related assays. The K63 polyubiquitin cleavage activity profiles of these vOTUs were found to track with the established pathogenesis of MLV, NADC31, SDSU73, and JXwn06 strains. Fascinatingly, NADC31 demonstrated significantly enhanced activity toward ISG15 substrates compared to its counterparts. Utilizing this information and strain-strain differences within the vOTU encoding region, sites were identified that can modulate K63 polyubiquitin and ISG15 cleavage activities. This information represents the basis for new tools to probe the role of vOTUs in the context of PRRSV pathogenesis.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Péptido Hidrolasas/metabolismo , Poliubiquitina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/enzimología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Factores Reguladores del Interferón/química , Factores Reguladores del Interferón/genética , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Poliubiquitina/química , Poliubiquitina/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Alineación de Secuencia , Porcinos , Proteínas Virales/química , Proteínas Virales/genética , Virulencia
9.
Virology ; 516: 30-37, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29324359

RESUMEN

Recombinant viruses of strain Ingelvac® PRRS porcine reproductive and respiratory syndrome virus (PRRSV) modified live virus vaccine were produced with two individual small in-frame deletions in nonstructural protein 2 (nsp2; Δ23 and Δ87) and also the same deletions supplanted with foreign tags (Δ23-V5, Δ23-FLAG, Δ23-S, Δ87-V5, Δ87-FLAG, Δ87-S). The viruses, but one (Δ87-FLAG), were stable for 10 passages and showed minimal effects on in vitro growth. Northern hybridization showed that the Δ23-tagged probe detected intracellular viral genome RNA as well as shorter RNAs that may represent heteroclite species, while the Δ87-tagged probe detected predominantly only genome length RNAs. When the tagged viruses were used to probe nsp2 protein in infected cells, perinuclear localization similar to native nsp2 was seen. Dual infection of Δ23-S and Δ87-S viruses allowed some discrimination of individual tagged nsp2 protein, facilitating future research. The mutants could potentially also be used to differentiate infected from vaccinated animals.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Porcinos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
10.
Virology ; 513: 168-179, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29096159

RESUMEN

Recent cases of porcine reproductive and respiratory syndrome virus (PRRSV) infection in United States swine-herds have been associated with high mortality in piglets and severe morbidity in sows. Analysis of the ORF5 gene from such clinical cases revealed a unique restriction fragment polymorphism (RFLP) of 1-7-4. The genome diversity of seventeen of these viruses (81.4% to 99.8% identical; collected 2013-2015) and the pathogenicity of 4 representative viruses were compared to that of SDSU73, a known moderately virulent strain. Recombination analyses revealed genomic breakpoints in structural and nonstructural regions of the genomes with evidence for recombination events between lineages. Pathogenicity varied between the isolates and the patterns were not consistent. IA/2014/NADC34, IA/2013/ISU-1 and IN/2014/ISU-5 caused more severe disease, and IA/2014/ISU-2 did not cause pyrexia and had little effect on pig growth. ORF5 RFLP genotyping was ineffectual in providing insight into isolate pathogenicity and that other parameters of virulence remain to be identified.


Asunto(s)
Evolución Molecular , Variación Genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Recombinación Genética , Proteínas del Envoltorio Viral/genética , Animales , Genotipo , Polimorfismo de Longitud del Fragmento de Restricción , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Análisis de Secuencia de ADN , Porcinos , Estados Unidos/epidemiología
11.
Vet Microbiol ; 203: 6-17, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28619168

RESUMEN

Epidemiologic data from Asian outbreaks of highly-pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) suggest that disease severity was associated with both the virulence of the PRRSV isolates and secondary bacterial infections. Previous reports have indicated that U.S. isolates of PRRSV predispose to secondary bacterial infections as well, but the severity of disease that occurred in Asia in pigs infected with these HP-PRRSV strains has not been reported in the U.S. The objectives of this research were to compare the pathogenesis of Asian and U.S. PRRSV isolates with regard to their ability to cause disease and predispose to secondary bacterial infections in swine. To address these objectives groups of pigs were infected with 1 of 2 Asian HP-PRRSV strains (rJXwn06 or rSRV07) or 1 of 2 U.S. PRRSV strains (SDSU73 or VR-2332) alone or in combination with Streptococcus suis, Haemophilus parasuis, and Actinobacillus suis. Pigs infected with rJXwn06 exhibited the most severe clinical disease while the pigs infected with rSRV07 and SDSU73 exhibited moderate clinical disease, and pigs infected with VR-2332 exhibited minimal clinical signs. The frequency of secondary bacterial pneumonia was associated with the clinical severity induced by the PRRSV strains evaluated. The levels of proinflammatory cytokines in the serum were often lower for pigs coinfected with virus and bacteria compared to pigs infected with PRRSV alone indicating an alteration in the immune response in coinfected pigs. Combined our results demonstrate that severity of disease appears to be dependent on virulence of the PRRSV strain, and development of secondary bacterial infection.


Asunto(s)
Infecciones por Haemophilus/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Infecciones Estreptocócicas/veterinaria , Enfermedades de los Porcinos/virología , Animales , Coinfección/veterinaria , Susceptibilidad a Enfermedades/veterinaria , Femenino , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/patología , Haemophilus parasuis/patogenicidad , Pulmón/microbiología , Pulmón/patología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus suis/patogenicidad , Porcinos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/patología , Viremia/veterinaria , Virulencia
12.
Vet Immunol Immunopathol ; 179: 70-6, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27590428

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for one of the most economically important diseases in swine worldwide. It causes reproductive failure in sows and pneumonia in pigs that predisposes them to secondary bacterial infections. Methods to control PRRSV and/or limit secondary bacterial infections are desired to reduce the impact of this virus on animal health. Neutrophils play a major role in combatting infection; they can act as phagocytes as well as produce and release lytic enzymes that have potent antimicrobial effects leading to the destruction and clearance of bacterial pathogens. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that controls the production, differentiation and function of granulocytes (including neutrophils) from the bone marrow. Recent work from our laboratory has shown that encoding porcine G-CSF in a replication-defective adenovirus (Ad5-G-CSF) and delivering a single dose to pigs induced a neutrophilia lasting more than two weeks. As secondary bacterial infection is a common occurrence following PRRSV infection, particularly following challenge with highly pathogenic (HP)-PRRSV, the aim of the current study was to evaluate the effectiveness of a single prophylactic dose of adenovirus-encoded G-CSF to mitigate secondary bacterial disease associated with HP-PRRSV infection. Administration of Ad5-G-CSF induced a significant neutrophilia as expected. However, between 1 and 2days following HP-PRRSV challenge the number of circulating neutrophils decreased dramatically in the HP-PRRSV infected group, but not the non-infected Ad5-G-CSF group. Ad5-G-CSF administration induced monocytosis as well, which was also reduced by HP-PRRSV challenge. There was no difference in the progression of disease between the Ad5-G-CSF and Ad5-empty groups following HP-PRRSV challenge, with pneumonia and systemic bacterial infection occurring in both treatment groups. Given the impact of HP-PRRSV infection on the neutrophilia induced by the Ad5-G-CSF administration, additional studies are warranted to evaluate the timing of Ad5-G-CSF induced neutrophilia and multiple G-CSF inoculations on protection against secondary bacterial infection following PRRSV infection. Nevertheless, this study may provide insight into the pathogenesis of HP-PRRSV.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Adenoviridae/genética , Animales , Inmunidad Innata/efectos de los fármacos , Síndrome Respiratorio y de la Reproducción Porcina/microbiología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos
13.
Virus Res ; 226: 108-116, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27545066

RESUMEN

In 2013, porcine epidemic diarrhea virus (PEDV) emerged in the United States as a rapidly spreading epidemic causing dramatic death losses in suckling piglets. Neonatal piglets are most vulnerable to clinical disease and their only protection is passive immunity from their dam. At the end of the third year of the PEDV outbreak, most US sow herds have been infected and many are entering into an endemic disease with much less, but still chronic losses. This endemic state and the occasional naïve herd that breaks with PEDV demonstrate a need to immunize sows to protect piglets. Stimulating PEDV immunity in the sow using safe and efficacious vaccines is the best course of action; however, conducting such studies to develop sow vaccines is very costly and logistically difficult. This manuscript reviews the status of PEDV vaccines available in the United States and Canada, and describes an experiment evaluating the potential use of young pigs as a surrogate model to evaluate potential sow vaccines.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Vacunas Virales/inmunología , Factores de Edad , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Canadá/epidemiología , Brotes de Enfermedades , Técnicas de Diagnóstico Molecular , Pruebas Serológicas , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología , Estados Unidos/epidemiología , Vacunación
14.
Virology ; 479-480: 475-86, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25759097

RESUMEN

Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide.


Asunto(s)
Variación Genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/ultraestructura , Recombinación Genética , Replicación Viral , Animales , Genotipo , Fenotipo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virión/ultraestructura
15.
J Virol Methods ; 218: 1-6, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25766790

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) became a significant pathogen of swine upon its emergence in the late 1980s and since then has exemplified a rapidly evolving, constantly re-emerging pathogen. In addition to the challenges faced in development of vaccines and diagnostics, research on the basic molecular pathogenesis of PRRSV is also restrained by the ability to accurately and comparatively quantitate levels of replication in different tissues and between strains. This is further complicated by the presence of non-genomic RNA within infected tissues which are generally detected with equivalent efficiency by RT-qPCR based techniques, thereby introducing inherent error in these measurements that may differ significantly by tissue and strain. To address this, an RT-qPCR based technique was developed which targets the viral RNA-dependent RNA polymerase gene (nsp9) which is unique to genomic RNA, being absent from all subgenomic and heteroclite RNAs. This assay targets a region of considerable sequence conservation, and based on sequence only, should be quantitative for approximately 40% of all Type 2 PRRSV strains in GenBank for which nsp9 sequence is available. The assay was demonstrated to be linear over nine orders of magnitude (10(10)-10(2) copies) and can be readily adapted for multiplex detection of additional divergent PRRSV strains. This assay will add significantly to the ability to assess and compare PRRSV replication in a variety of tissues and between divergent strains, including highly pathogenic strains of considerable concern to the global pork industry.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/diagnóstico , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Genoma Viral/genética , Límite de Detección , Síndrome Respiratorio y de la Reproducción Porcina/virología , ARN Viral/genética , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/genética , Replicación Viral
16.
Virology ; 481: 51-62, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25768891

RESUMEN

The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface.


Asunto(s)
Membrana Celular/virología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Porcinos , Proteínas no Estructurales Virales/genética
17.
Vaccine ; 32(48): 6457-62, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25285886

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant reproductive losses in the sow herd and respiratory disease in growing pigs. The virus belongs to the family Arteriviridae and there are two major genotypes. Type 1 is represented by Lelystad virus, the European prototype virus, and Type 2 is represented by the North American prototype virus, VR-2332. Depending on husbandry, immune status of the herd, and virulence of the isolate, the severity of disease and magnitude of economic loss can be variable. Vaccine use is not always successful indicating a lack of cross-protection between vaccine strains and circulating wild-type viruses. To date, there is no clear method to demonstrate if a vaccine confers protection against a specific isolate except for empirical animal studies. In 2006, a new lineage of Type 2 PRRSV emerged in Chinese swine herds that were suffering dramatic losses resulting in those viruses being described as "Highly Pathogenic PRRSV" (HP-PRRSV). Experimental reproduction of severe disease with HP-PRRSV isolates and virus derived from HP-PRRSV clones demonstrated the causal role of this virus. Recently, partial heterologous protection has been reported for Type 1 and Type 2 attenuated PRRSV vaccines against challenge by different Chinese HP-PRRSV isolates providing some hope for reducing economic loss. This paper reports the efficacy of a commercially available Type 2 attenuated vaccine in young pigs against heterologous challenge with a Chinese and Vietnamese HP-PRRSV isolate. When compared to unvaccinated pigs, vaccination decreased the length of viremia and viral titer, diminished the time of high fever and reduced macroscopic lung scores following homologous and heterologous PRRSV challenge. These results demonstrate the potential use of vaccine as an aid in the control of HP-PRRSV outbreaks.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Vacunas Virales/inmunología , Animales , Líquido del Lavado Bronquioalveolar/virología , Inmunidad Humoral , Pulmón/patología , Pulmón/virología , Porcinos , Vacunación/veterinaria , Vacunas Atenuadas/inmunología , Carga Viral
18.
Immunol Res ; 59(1-3): 81-108, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24981123

RESUMEN

Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the "critical window" of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Proliferación Celular , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/patología , Macrófagos/virología , Pandemias , Células Plasmáticas/inmunología , Células Plasmáticas/patología , Células Plasmáticas/virología , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Retratos como Asunto , Porcinos
19.
Virology ; 454-455: 247-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24725951

RESUMEN

Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease, recently exacerbated by the emergence of highly pathogenic strains (HP-PRRSV). Within the nonstructural protein 2 of PRRSV is a deubiquitinating enzyme domain belonging to the viral ovarian tumor (vOTU) protease superfamily. vOTUs, which can greatly vary in their preference for their host ubiquitin (Ub) and Ub-like substrates such as interferon stimulated gene 15 (ISG15), have been implicated as a potential virulence factor. Since various strains of PRRSV have large variations in virulence, the specificity of vOTUs from two PRRSV strains of varying virulence were determined. While both vOTUs showed de-ubiquitinating activity and markedly low deISGylating activity, HP-PRRSV demonstrated a strong preference for lysine 63-linked poly-Ubiquitin, tied to innate immune response regulation. This represents the first report of biochemical activity unique to HP-PRRSV that has implications for a potential increase in immunosuppression and virulence.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino/enzimología , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Especificidad por Sustrato , Porcinos
20.
J Virol ; 87(24): 13456-65, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24089566

RESUMEN

Viral structural proteins form the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nonstructural protein 2 (nsp2) as a novel structural component of the porcine reproductive and respiratory syndrome virus (PRRSV) particle. A set of custom α-nsp2 antibodies targeting conserved epitopes within four distinct regions of nsp2 (the PLP2 protease domain [OTU], the hypervariable domain [HV], the putative transmembrane domain [TM], and the C-terminal region [C]) were obtained commercially and validated in PRRSV-infected cells. Highly purified cell-free virions of several PRRSV strains were isolated through multiple rounds of differential density gradient centrifugation and analyzed by immunoelectron microscopy (IEM) and Western blot assays using the α-nsp2 antibodies. Purified viral preparations were found to contain pleomorphic, predominantly spherical virions of uniform size (57.9 nm ± 8.1 nm diameter; n = 50), consistent with the expected size of PRRSV particles. Analysis by IEM indicated the presence of nsp2 associated with the viral particle of diverse strains of PRRSV. Western blot analysis confirmed the presence of nsp2 in purified viral samples and revealed that multiple nsp2 isoforms were associated with the virion. Finally, a recombinant PRRSV genome containing a myc-tagged nsp2 was used to generate purified virus, and these particles were also shown to harbor myc-tagged nsp2 isoforms. Together, these data identify nsp2 as a virion-associated structural PRRSV protein and reveal that nsp2 exists in or on viral particles as multiple isoforms.


Asunto(s)
Evolución Molecular , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virión/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Porcinos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virión/química , Virión/clasificación , Virión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...