Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Cancer ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824069

RESUMEN

A better understanding of the RNA biology and chemistry is necessary to then develop new RNA therapeutic strategies. This review is the synthesis of a series of conferences that took place during the 6th international course on post-transcriptional gene regulation at Institut Curie. This year, the course made a special focus on RNA chemistry.

2.
NAR Cancer ; 6(2): zcae019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690580

RESUMEN

Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.

3.
Nat Rev Cancer ; 21(9): 558-577, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341537

RESUMEN

Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/metabolismo , Procesos Neoplásicos , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral
4.
J Physiol ; 599(8): 2299-2321, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33608879

RESUMEN

KEY POINTS: Patients with end-stage renal failure need arteriovenous fistulas (AVF) to undergo dialysis. However, AVFs present a high rate of failure as a result of excessive venous thickness. Excessive venous thickness may be a consequence of surgical dissection and change in oxygen concentration within the venous wall. We show that venous cells adapt their metabolism and growth depending on oxygen concentration, and drugs targeting the hypoxic response pathway modulate this response in vitro. We used the same drugs on a mouse model of AVF and show that direct or indirect inhibition of the hypoxia-inducible factors (HIFs) help decrease excessive venous thickness. Hypoxia and HIFs can be targets of therapeutic drugs to prevent excessive venous thickness in patients undergoing AVF surgical creation. ABSTRACT: Because the oxygen concentration changes in the venous wall, surrounding tissue and the blood during surgical creation of arteriovenous fistula (AVF), we hypothesized that hypoxia could contribute to AVF failure as a result of neointimal hyperplasia. We postulated that modulation of the hypoxia-inducible factors (HIF) with pharmacological compounds could promote AVF maturation. Fibroblasts [normal human fibroblasts (NHF)], smooth muscle cells [human umbilical vein smooth muscle cells (HUVSMC)] and endothelial cells [human umbilical vein endothelial cells (HUVEC)], representing the three layers of the venous wall, were tested in vitro for proliferation, cell death, metabolism, reactive oxygen species production and migration after silencing of HIF1/2-α or after treatment with deferioxamine (DFO), everolimus (Eve), metformin (Met), N-acetyl-l-cysteine (NAC) and topoisomerase I (TOPO), which modulate HIF-α stability or activity. Compounds that were considered to most probably modify intimal hyperplasia were applied locally to the vessels in a mouse model of aortocaval fistula. We showed, in vitro, that NHF and HUVSMC can adapt their metabolism and thus their growth depending on oxygen concentration, whereas HUVEC appears to be less flexible. siHIF1/2α, DFO, Eve, Met, NAC and TOPO can modulate metabolism and proliferation depending on the cell type and the oxygen concentration. In vivo, siHIF1/2α, Eve and TOPO decreased neointimal hyperplasia by 32%-50%, 7 days after treatment. Within the vascular wall, hypoxia and HIF-1/2 mediate early failure of AVF. Local delivery of drugs targeting HIF-1/2 could inhibit neointimal hyperplasia in a mouse model of AVF. Such compounds may be delivered during the surgical procedure for AVF creation to prevent early AVF failure.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Células Endoteliales , Humanos , Hiperplasia , Hipoxia
5.
Cancers (Basel) ; 12(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238609

RESUMEN

Metabolic flexibility is the ability of a cell to adapt its metabolism to changes in its surrounding environment. Such adaptability, combined with apoptosis resistance provides cancer cells with a survival advantage. Mitochondrial voltage-dependent anion channel 1 (VDAC1) has been defined as a metabolic checkpoint at the crossroad of these two processes. Here, we show that the hypoxia-induced cleaved form of VDAC1 (VDAC1-ΔC) is implicated in both the up-regulation of glycolysis and the mitochondrial respiration. We demonstrate that VDAC1-ΔC, due to the loss of the putative phosphorylation site at serine 215, concomitantly with the loss of interaction with tubulin and microtubules, reprograms the cell to utilize more metabolites, favoring cell growth in hypoxic microenvironment. We further found that VDAC1-ΔC represses ciliogenesis and thus participates in ciliopathy, a group of genetic disorders involving dysfunctional primary cilium. Cancer, although not representing a ciliopathy, is tightly linked to cilia. Moreover, we highlight, for the first time, a direct relationship between the cilium and cancer cell metabolism. Our study provides the first new comprehensive molecular-level model centered on VDAC1-ΔC integrating metabolic flexibility, ciliogenesis, and enhanced survival in a hypoxic microenvironment.

6.
Theranostics ; 10(6): 2696-2713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194829

RESUMEN

Rationale: Renal cell carcinoma (RCC) accounts for about 2% of all adult cancers, and clear cell RCC (ccRCC) is the most common RCC histologic subtype. A hallmark of ccRCC is the loss of the primary cilium, a cellular antenna that senses a wide variety of signals. Loss of this key organelle in ccRCC is associated with the loss of the von Hippel-Lindau protein (VHL). However, not all mechanisms of ciliopathy have been clearly elucidated. Methods: By using RCC4 renal cancer cells and patient samples, we examined the regulation of ciliogenesis via the presence or absence of the hypoxic form of the voltage-dependent anion channel (VDAC1-ΔC) and its impact on tumor aggressiveness. Three independent cohorts were analyzed. Cohort A was from PREDIR and included 12 patients with hereditary pVHL mutations and 22 sporadic patients presenting tumors with wild-type pVHL or mutated pVHL; Cohort B included tissue samples from 43 patients with non-metastatic ccRCC who had undergone surgery; and Cohort C was composed of 375 non-metastatic ccRCC tumor samples from The Cancer Genome Atlas (TCGA) and was used for validation. The presence of VDAC1-ΔC and legumain was determined by immunoblot. Transcriptional regulation of IFT20/GLI1 expression was evaluated by qPCR. Ciliogenesis was detected using both mouse anti-acetylated α-tubulin and rabbit polyclonal ARL13B antibodies for immunofluorescence. Results: Our study defines, for the first time, a group of ccRCC patients in which the hypoxia-cleaved form of VDAC1 (VDAC1-ΔC) induces resorption of the primary cilium in a Hypoxia-Inducible Factor-1 (HIF-1)-dependent manner. An additional novel group, in which the primary cilium is re-expressed or maintained, lacked VDAC1-ΔC yet maintained glycolysis, a signature of epithelial-mesenchymal transition (EMT) and more aggressive tumor progression, but was independent to VHL. Moreover, these patients were less sensitive to sunitinib, the first-line treatment for ccRCC, but were potentially suitable for immunotherapy, as indicated by the immunophenoscore and the presence of PDL1 expression. Conclusion: This study provides a new way to classify ccRCC patients and proposes potential therapeutic targets linked to metabolism and immunotherapy.


Asunto(s)
Carcinoma de Células Renales , Cilios , Neoplasias Renales , Canal Aniónico 1 Dependiente del Voltaje/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Cilios/metabolismo , Cilios/patología , Estudios de Cohortes , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Adulto Joven
7.
J Cell Mol Med ; 24(5): 2931-2941, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32032472

RESUMEN

Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.


Asunto(s)
Fibroblastos/citología , Células Endoteliales de la Vena Umbilical Humana/citología , Miocitos del Músculo Liso/citología , Osteopontina/metabolismo , Hipoxia de la Célula/genética , Técnicas de Cocultivo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Miocitos del Músculo Liso/metabolismo , Osteopontina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884815

RESUMEN

The primary cilium is a solitary, nonmotile and transitory appendage that is present in virtually all mammalian cells. Our knowledge of its ultrastructure and function is the result of more than fifty years of research that has dramatically changed our perspectives on the primary cilium. The mutual regulation between ciliogenesis and the cell cycle is now well-recognized, as well as the function of the primary cilium as a cellular "antenna" for perceiving external stimuli, such as light, odorants, and fluids. By displaying receptors and signaling molecules, the primary cilium is also a key coordinator of signaling pathways that converts extracellular cues into cellular responses. Given its critical tasks, any defects in primary cilium formation or function lead to a wide spectrum of diseases collectively called "ciliopathies". An emerging role of primary cilium is in the regulation of cancer development. In this review, we seek to describe the current knowledge about the influence of the primary cilium in cancer progression, with a focus on some of the events that cancers need to face to sustain survival and growth in hypoxic microenvironment: the cancer hallmarks.


Asunto(s)
Autofagia/genética , Biomarcadores de Tumor/genética , Cilios/ultraestructura , Neoplasias/ultraestructura , Ciclo Celular , Cilios/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Unión Proteica/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
9.
PLoS One ; 13(3): e0194782, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29596470

RESUMEN

Biogenesis of iron-sulfur clusters (ISC) is essential to almost all forms of life and involves complex protein machineries. This process is initiated within the mitochondrial matrix by the ISC assembly machinery. Cohort and case report studies have linked mutations in ISC assembly machinery to severe mitochondrial diseases. The voltage-dependent anion channel (VDAC) located within the mitochondrial outer membrane regulates both cell metabolism and apoptosis. Recently, the C-terminal truncation of the VDAC1 isoform, termed VDAC1-ΔC, has been observed in chemoresistant late-stage tumor cells grown under hypoxic conditions with activation of the hypoxia-response nuclear factor HIF-1α. These cells harbored atypical enlarged mitochondria. Here, we show for the first time that depletion of several proteins of the mitochondrial ISC machinery in normoxia leads to a similar enlarged mitochondria phenotype associated with accumulation of VDAC1-ΔC. This truncated form of VDAC1 accumulates in the absence of HIF-1α and HIF-2α activations and confers cell resistance to drug-induced apoptosis. Furthermore, we show that when hypoxia and siRNA knock-down of the ISC machinery core components are coupled, the cell phenotype is further accentuated, with greater accumulation of VDAC1-ΔC. Interestingly, we show that hypoxia promotes the downregulation of several proteins (ISCU, NFS1, FXN) involved in the early steps of mitochondrial Fe-S cluster biogenesis. Finally, we have identified the mitochondria-associated membrane (MAM) localized Fe-S protein CISD2 as a link between ISC machinery downregulation and accumulation of anti-apoptotic VDAC1-ΔC. Our results are the first to associate dysfunction in Fe-S cluster biogenesis with cleavage of VDAC1, a form which has previously been shown to promote tumor resistance to chemotherapy, and raise new perspectives for targets in cancer therapy.


Asunto(s)
Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Eliminación de Secuencia , Azufre/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Caspasa 3/metabolismo , Activación Enzimática/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Células Hep G2 , Humanos , Mitocondrias/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Hipoxia Tumoral/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...