Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mutat ; 41(7): 1187-1208, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32369864

RESUMEN

NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.


Asunto(s)
Proteína Homeótica Nkx-2.5/genética , Secuencias de Aminoácidos , Bases de Datos Genéticas , Humanos , Mutación , Estructura Secundaria de Proteína
2.
Front Microbiol ; 7: 51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26870014

RESUMEN

The human microbiota is the collection of microorganisms living in or on the human body. An imbalance or dysbiosis in these microbial communities can be associated with a wide variety of human diseases (Petersen and Round, 2014; Pham and Lawley, 2014; Zaura et al., 2014). Moreover, when the microbiota of the same body sites is compared between different healthy individuals, specific microbial community features are apparent (Li et al., 2012; Yatsunenko et al., 2012; Oh et al., 2014; Relman, 2015). In addition, specific selective pressures are found at distinct body sites leading to different patterns in microbial community structure and composition (Costello et al., 2009; Consortium, 2012b; Zhou et al., 2013). Because of these natural variations, a comprehensive characterization of the healthy microbiota is critical for predicting alterations related to diseases. This characterization should be based on a broad healthy population over time, geography, and culture (Yatsunenko et al., 2012; Shetty et al., 2013; Leung et al., 2015; Ross et al., 2015). The study of healthy individuals representing different ages, cultural traditions, and ethnic origins will enable to understand how the associated microbiota varies between populations and respond to different lifestyles. It is important to address these natural variations in order to later detect variations related to disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...