Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 165: 110210, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764029

RESUMEN

Niclosamide has been proposed as a possible candidate for a Covid-19 drug. However, the metabolites of niclosamide are difficult to investigate because they are usually not available commercially or they are quite expensive in the commercial market. In this study, the major metabolite of niclosamide in human liver microsomes (HLMs) was confirmed to be 3-OH niclosamide. Because the production of 3-OH niclosamide using HLMs has a slow turnover rate, a new method of producing niclosamide metabolite with an easier and highly cost-efficient method was thus conducted. Bacterial CYP102A1 (BM3) is one of the bacterial cytochrome P450s (CYPs) from Bacillus megaterium that structurally show similar activities to human CYPs. Here, the BM3 mutants were used to produce niclosamide metabolites and the metabolites were analyzed using high-performance liquid chromatography and LC-mass spectrometry. Among a set of mutants tested here, BM3 M14 mutant was the most active in producing 3-OH niclosamide, the major metabolite of niclosamide. Comparing BM3 M14 and HLMs, BM3 M14 production of 3-OH niclosamide was 34-fold higher than that of HLMs. Hence, the engineering of BM3 can be a cost-efficient method to produce 3-OH niclosamide.


Asunto(s)
COVID-19 , Niclosamida , Humanos , Niclosamida/metabolismo , Proteínas Bacterianas/metabolismo , COVID-19/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Microsomas Hepáticos/metabolismo
2.
J Bioenerg Biomembr ; 53(3): 259-274, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33818669

RESUMEN

Ultraviolet exposure can cause photoaging toward the human skin which is begun by the inflammation on the exposure area, also resulting in activation of a degradative enzyme cathepsin L. This enzyme is one of the interesting novel therapeutic targets for antiaging agents. Three plants, named Kleinhovia hospita, Aleurites moluccana, and Centella asiatica, are well-known in the tropical region as anti-inflammatory herbs. The aims of this study were to predict the antiaging activity of the 31 compounds from these plants via inhibition of cathepsin L. All compounds were minimized their energies and then used in molecular docking. After that, molecular dynamics (MD) simulation was employed for the 5 candidate ligands and the positive control; schinol. Interaction analysis results of the pre-MD and post-MD simulation structures were obtained. Furthermore, a toxicity test was performed using ADMET Predictor 7.1. Based on the molecular docking and the MD simulation results, kleinhospitine A, ß-amyrin, and castiliferol exhibited lower binding free energy than schinol (-27.0925, -28.6813, -26.0037 kcal/mol) and also had interactions with the S´ region binding site. The toxicity test indicated that ß-amyrin is the most potential candidate since it exhibited the lowest binding energy and the high safety level.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Simulación del Acoplamiento Molecular/métodos , Plantas Medicinales/química , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...