Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Front Immunol ; 13: 1028953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466902

RESUMEN

Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.


Asunto(s)
Inflamasomas , Enfermedades Inflamatorias del Intestino , Humanos , Mitocondrias , Colesterol , Enfermedad Crónica , Glucólisis , Ácido Pirúvico
3.
Cells ; 11(12)2022 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741034

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GRß) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GRiKO) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker.


Asunto(s)
Colitis Ulcerosa , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Esteroides/metabolismo
4.
Nutr Cancer ; 74(10): 3723-3734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35703849

RESUMEN

Colorectal cancer is one of the most common types of cancer. Bioactive natural compounds can act in cancer chemoprevention as tumor growth inhibitors. Tucum-do-cerrado (Bactris setosa Mart.) is a Brazilian fruit that contains several phenolic compounds. This study investigated the effect of tucum aqueous extract in Caco-2 cells in comparison to primary human intestinal organoids and fibroblasts. Cells were exposed to 0.5 and 1 mg/ml of tucum aqueous extract for 24 h. ROS production, mRNA levels for SOD1 and SOD2, CAT, GPX1, NFE2L2, HIF1A and NOS2 were evaluated in Caco-2 cells exposed to tucum extract. Cell viability of Caco-2 cells was decreased upon tucum extract exposure. Mitochondrial ROS levels increased in Caco-2 cells exposed to tucum extract. The mRNA levels of SOD1, SOD2, CAT, GPX, NFE2L2 and HIF1A were downregulated in Caco-2 cells exposed to tucum extract, while NOS2 mRNA levels remained unchanged. Protein levels of SOD2, CAT and NRF2 remained unchanged in Caco-2 cells treated with tucum extract, indicating that catalase and SOD2 cellular functions may be unaffected by the tucum extract at 24 h, of exposure. Aqueous extract of tucum-do-cerrado may induce cellular toxicity in a cancer cell-specific manner, possibly through increased mitochondrial ROS production and gene expression regulation.


Asunto(s)
Adenocarcinoma , Arecaceae , Neoplasias Colorrectales , Arecaceae/metabolismo , Células CACO-2 , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Extractos Vegetales/farmacología , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1
6.
Front Immunol ; 10: 277, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915065

RESUMEN

Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.


Asunto(s)
Ácidos Grasos Volátiles/fisiología , Enfermedades Inflamatorias del Intestino/etiología , Mucosa Intestinal/metabolismo , Animales , Bacterias/metabolismo , Proliferación Celular , Microbioma Gastrointestinal , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/inmunología , Prebióticos , Receptores de Superficie Celular/fisiología , Receptores Acoplados a Proteínas G/fisiología
7.
Nutrients ; 8(10)2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27782042

RESUMEN

Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800mg/kg/day, orally) were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally). Rat hepatocyte cultures were exposed to 20mmol/LAPAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF.


Asunto(s)
Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Opuntia/química , Fitoterapia , Extractos Vegetales/farmacología , Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Suplementos Dietéticos , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA