Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plant Physiol Biochem ; 212: 108668, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823091

RESUMEN

Alcohol acyltransferases (AATs) play a crucial role in catalyzing the transfer of acyl groups, contributing to the diverse aroma of fruits, including strawberries. In this research we identified nine AAT genes in strawberries through a comprehensive analysis involving phylogenetics, gene structure, conserved motifs, and structural protein model examinations. The study used the 'Camarosa' strawberry genome database, and experiments were conducted with fruits harvested at different developmental and ripening stages. The transcriptional analysis revealed differential expression patterns among the AAT genes during fruit ripening, with only four genes (SAAT, FaAAT2, FaAAT7, and FaAAT9) showing increased transcript accumulation correlated with total AAT enzyme activity. Additionally, the study employed in silico methods, including sequence alignment, phylogenetic analysis, and structural modeling, to gain insights into the AAT protein model structures with increase expression pattern during fruit ripening. The four modeled AAT proteins exhibited structural similarities, including conserved catalytic sites and solvent channels. Furthermore, the research investigated the interaction of AAT proteins with different substrates, highlighting the enzymes' promiscuity in substrate preferences. The study contributes with valuable information to unveil AAT gene family members in strawberries, providing scientific background for further exploration of their biological characteristics and their role in aroma biosynthesis during fruit ripening.

2.
Food Funct ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847603

RESUMEN

The gut microbiota is essential in human health, influencing various physiological processes ranging from digestion and metabolism to immune function and mental health. Dietary fiber pectins and prebiotics have emerged as key modulators of gut microbiota composition and function, offering potential therapeutic implications for promoting gut health and preventing intestinal inflammatory diseases. In this review, we explore the modulation of gut microbiota by dietary fiber pectins and prebiotics in infants and adults. We begin with an overview of the gut microbiota composition and function in different age groups, highlighting the factors in shaping microbial communities in both age groups, especially the effect of diet. We then delve into the impact of dietary fiber pectins and prebiotics on gut microbiota composition and function, examining their effects on digestive health, intestinal barrier integrity, immune function, metabolic health, and mental health across different life stages. We further compare how aging affects the gut function and immune system, and we discuss the main health outcomes associated with dietary fiber intake and prebiotics, including the impact on digestive health, improvement in immune function, improvement in cholesterol and glucose metabolism, weight management, mental health, and prevention of diseases. Finally, we highlight the challenges and future directions for research. By advancing the understanding of gut microbiota dynamics and translating scientific insights into clinical practice, it could harness the full potential of dietary fiber pectins and prebiotics to optimize gut health, improve overall well-being across the lifespan, and increase longevity.

3.
Metab Brain Dis ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848023

RESUMEN

The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.

4.
Br J Nutr ; : 1-27, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38800991

RESUMEN

Ganoderma lucidum (a mushroom used in traditional Chinese medicine) compounds may attenuate aging-related physiological changes and restore normal immunity. However, studies on the physiological effects of Ganoderma lucidum dry extract food supplements are few. Therefore, here, we aimed to investigate the effects of Ganoderma lucidum dry extract food supplement on the lymphocyte function of older women. This was a double-blind clinical trial (n = 60) with a final 39 older volunteers, divided into two groups, Ganoderma lucidum (n = 23) and placebo (n = 16). The Ganoderma lucidum group received 2,000 mg/day of Ganoderma lucidum dry extract for 8 weeks. We used flow cytometry to determine the lymphocyte profile. CD4+ lymphocyte gene expression was evaluated by real-time PCR. We observed that in the Ganoderma lucidum group, concanavalin A (ConA) stimulation increased lymphocyte proliferation. Further, we observed an increase in expression of FOXP3, TGF-ß, IL-10, IL-6, RORγ, GATA-3, and IFN-γ genes in the Ganoderma lucidum group. Furthermore, in the Ganoderma lucidum group, ionomycin and PMA stimulation led to decrease in Th17+ cells and increase in Th2+ cells. Thus, in older women, Ganoderma lucidum regulates T lymphocyte function leading to a predominant anti-inflammatory action but does not induce T lymphocyte proliferation through CD28 signaling pathway.

5.
Carbohydr Polym ; 335: 122010, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616103

RESUMEN

The mesocarp (albedo) of passion fruit is considered a waste product but rich in soluble fibers, especially pectins. Biological activity and health benefits of pectins have recently emerged, especially in colorectal cancer and attenuating inflammation. Pectin conventional extraction often uses mineral acids, which can be hazardous to the environment, and alternatives can be costly. Here, we assessed a high-temperature and pressure method to extract pectin from the passion fruit albedo and evaluated the differences from the water-soluble fractions extracted. HPSEC, HPAEC, FTIR-ATR, and HSQC-NMR were performed to identify and confirm the highly methylated homogalacturonan structures. The heat-modified samples showed a decreased molecular size compared to the untreated sample. Colorectal cancer cell lines showed reduced viability after being treated with different doses of modified samples, with two of them, LW-MP3 and 4, showing the most potent effects. All samples were detected inside cells by immunofluorescence assay. It was observed that LW-MP3 and 4 upregulated the p53 protein, indicating cell-cycle arrest and the cleaved caspase-9 in one of the cell lines, with LW-MP4 enhancing cell death by apoptosis. Since the modified samples were composed of hydrolyzed homogalacturonans, those probably were the responsible structures for these anti-cancer effects.


Asunto(s)
Neoplasias Colorrectales , Passiflora , Frutas , Temperatura , Polisacáridos/farmacología , Pectinas/farmacología
6.
Carbohydr Polym ; 331: 121878, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388061

RESUMEN

Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.


Asunto(s)
Carica , Neoplasias del Colon , Ratas , Animales , Ratones , Pectinas/farmacología , Pectinas/química , Carica/química , Células 3T3 NIH , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Proliferación Celular , Colon
7.
Nat Prod Bioprospect ; 14(1): 15, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310179

RESUMEN

A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.

8.
Carbohydr Polym ; 328: 121747, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220355

RESUMEN

Wheat bran is a low-cost by-product with significant nutritional value, but it is primarily utilized in animal feed applications. This study sought to investigate chemical methodologies for modifying the wheat bran's structure, enhancing non-starch polysaccharides solubility in water, and assessing alterations in functional and biological attributes. Chemical modifications were conducted under aqueous, alkaline, acid, and oxidizing conditions. Parameters such as yield, monosaccharides, arabinoxylans, ß-glucan and phenolic content, molecular weight, functional properties, and prebiotic in vitro capacity were examined. The samples exhibited higher yields than the control, particularly in alkaline and acidic extractions. Notably, all soluble polysaccharide fractions (SPF) displayed a reduced molecular weight (<25KDa). ß-glucan contents were raised in alkaline and acid extractions compared to the control, despite only in alkaline extraction were observed increase in arabinoxylans, confirmed by enzymatic-driven linkage analyses. Phenolic compounds and their antioxidant activities were low across all SPF. The samples showed heightened solubility, minimal foaming, and reduced water absorption properties. An alkaline extraction demonstrated a potential high prebiotic effect. Most samples showed positive relative growth and prebiotic activity for Lactobacillus and Bifidobacterium. This study suggests that an alkaline extraction of wheat by-product could enhance its value by increasing ß-glucan content, arabinoxylans release, and prebiotic potential.


Asunto(s)
Fibras de la Dieta , beta-Glucanos , Animales , Fibras de la Dieta/análisis , Polisacáridos/química , Antioxidantes/farmacología , Antioxidantes/análisis , beta-Glucanos/farmacología , beta-Glucanos/química , Agua
9.
Curr Res Struct Biol ; 6: 100112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046895

RESUMEN

Reducing inflammation by diet is a major goal for prevention or lowering symptoms of a variety of diseases, such as auto-immune reactions and cancers. Natural polysaccharides are increasingly gaining attention due to their potential immunomodulating capacity. Structures of those molecules are highly important for their effects on the innate immune system, cytokine production and secretion, and enzymes in immune cells. Such polysaccharides include ß-glucans, pectins, fucoidans, and fructans. To better understand the potential of these immunomodulatory molecules, it is crucial to enhance dedicated research in the area. A bibliometric analysis was performed to set a starting observation point. Major pillars of inflammation, such as pattern recognition receptors (PRRs), enzymatic production of inflammatory molecules, and involvement in specific pathways such as Nuclear-factor kappa-B (NF-kB), involved in cell transcription, survival, and cytokine production, and mitogen-activated protein kinase (MAPK), a regulator of genetic expression, mitosis, and cell differentiation. Therefore, the outcomes from polysaccharide applications in those scenarios are discussed.

10.
Toxins (Basel) ; 15(11)2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37999513

RESUMEN

Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.


Asunto(s)
Toxinas Biológicas , Ponzoñas , Animales , Ponzoñas/genética , Duplicación de Gen , Transcriptoma , Perfilación de la Expresión Génica , Filogenia , Evolución Molecular
11.
Plants (Basel) ; 12(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514364

RESUMEN

Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.

12.
Front Nutr ; 10: 1144677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293672

RESUMEN

In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.

13.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36606552

RESUMEN

Colorectal cancer is the third most incident and second most lethal type of cancer worldwide. Lifestyle and dietary patterns are the key factors for higher disease development risk. The dietary fiber intake from fruits and vegetables, mainly formed by food hydrocolloids, can help to lower the incidence of this type of neoplasia. Different food polysaccharides have applications in anti-tumoral therapy, such as coadjuvant to mainstream drugs, carriage-like properties, or direct influence on tumoral cells. Some classes include inulin, ß-glucans, pectins, fucoidans, alginates, mucilages, and gums. Therefore, it is fundamental to discuss colorectal cancer mechanisms and the roles played by different polysaccharides in intestinal health. Genetic, environmental, and immunological modulation of mutated pathways regarding colorectal cancer has been explored before. Microbial diversity, byproduct formation (primarily short-chain fatty acids), inflammatory profile control, and tumoral mutated pathways regulation are thoroughly explored mechanisms by which dietary fiber sources influence a healthy gut ambiance.

14.
Int J Biol Macromol ; 229: 11-21, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586647

RESUMEN

Pectin is one of the polysaccharides to be used as a coating nanomaterial. The characteristics of pectin are suitable to form nanostructures for protection, increased absorption, and bioavailability of different active compounds. This review aims to point out the structural features of pectins and their use as nanocarriers. It also indicates the principal methodologies for the elaboration and application of foods. The research carried out shows that pectin is easily extracted from natural sources, biodegradable, biocompatible, and non-toxic. The mechanical resistance and stability in different pH ranges and the action of digestive enzymes allow the nanostructures to pass intact through the gastrointestinal system and be effectively absorbed. Pectin can bind to macromolecules, especially proteins, to form stable nanostructures, which can be formed by different methods; polyelectrolyte complexes are the most frequent ones. The pectin-derived nanoparticles could be added to foods and dietary supplements, demonstrating a promising nanocarrier with a broad technological application.


Asunto(s)
Pectinas , Polisacáridos , Pectinas/química , Disponibilidad Biológica , Polisacáridos/química , Polielectrolitos , Proteínas
15.
Front Nutr ; 10: 1286138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283907

RESUMEN

Pectins, a class of dietary fibers abundant in vegetables and fruits, have drawn considerable interest due to their potential anti-inflammatory properties. Numerous studies have indicated that incorporating pectins into infant formula could be a safe strategy for alleviating infant regurgitation and diarrhea. Moreover, pectins have been shown to modulate cytokine production, macrophage activity, and NF-kB expression, all contributing to their anti-inflammatory effects. Despite this promising evidence, the exact mechanisms through which pectins exert these functions and how their structural characteristics influence these processes remain largely unexplored. This knowledge is particularly significant in the context of gut inflammation in developing preterm babies, a critical aspect of necrotizing enterocolitis (NEC), and in children and adults dealing with inflammatory bowel disease (IBD). Our mini review aims to provide an up-to-date compilation of relevant research on the effects of pectin on gut immune responses, specifically focusing on preterms and newborns. By shedding light on the underlying mechanisms and implications of pectin-mediated anti-inflammatory properties, this review seeks to advance our knowledge in this area and pave the way for future research and potential therapeutic interventions.

16.
Food Funct ; 13(22): 11438-11454, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36314297

RESUMEN

The intake of dietary fibers has been associated with a reduction in the risk of colorectal cancer. Pectins - a class of dietary fibers - are polysaccharides that have a complex structure with a wide range of direct and indirect biological beneficial effects on humans. Direct effects include dilution of carcinogens, reduction in cholesterol levels, and interaction with immune cells. Indirect effects include the fermentation and production of short-chain fatty acids. All these biological effects have implications for colon cancer development; however, the exact mechanisms are not fully understood. In this review, we explore the clinical trials regarding dietary fibers and colorectal cancer, thus indicating the potential anti-cancer effects of pectins and modified pectins. We focused on the emerging biological effects of pectins through targeting colorectal cancer hallmark effects and the enabling characteristics. We provide an overview of the mechanisms for each hallmark capability and how the different pectins might exert that anti-cancer effect, such as induction of apoptosis, reduction in cancer cell proliferation and metastasis. The data compilation described herein can guide future clinical trials to investigate how to target specific pectin structures to act as an adjuvant in colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Pectinas , Humanos , Pectinas/farmacología , Pectinas/uso terapéutico , Pectinas/química , Fibras de la Dieta , Ácidos Grasos Volátiles , Polisacáridos , Neoplasias del Colon/tratamiento farmacológico
17.
Colloids Surf B Biointerfaces ; 218: 112707, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35907354

RESUMEN

Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.


Asunto(s)
Antocianinas , Antioxidantes , Antocianinas/química , Antioxidantes/química , Materiales Biocompatibles , Lípidos , Polisacáridos/química
18.
Antioxidants (Basel) ; 11(3)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35326155

RESUMEN

Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.

19.
Biomolecules ; 12(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35204790

RESUMEN

Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.


Asunto(s)
Galectina 3 , Pectinas , Galectina 3/metabolismo , Galectinas , Humanos , Pectinas/química
20.
Cells ; 10(9)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34571988

RESUMEN

Papaya is a fleshy fruit that undergoes fast ethylene-induced modifications. The fruit becomes edible, but the fast pulp softening is the main factor that limits the post-harvest period. Papaya fast pulp softening occurs due to cell wall disassembling coordinated by ethylene triggering that massively expresses pectinases. In this work, RNA-seq analysis of ethylene-treated and non-treated papayas enabled a wide transcriptome overview that indicated the role of ethylene during ripening at the gene expression level. Several families of transcription factors (AP2/ERF, NAC, and MADS-box) were differentially expressed. ACO, ACS, and SAM-Mtase genes were upregulated, indicating a high rate of ethylene biosynthesis after ethylene treatment. The correlation among gene expression and physiological data demonstrated ethylene treatment can indeed simulate ripening, and regulation of changes in fruit color, aroma, and flavor could be attributed to the coordinated expression of several related genes. Especially about pulp firmness, the identification of 157 expressed genes related to cell wall metabolism demonstrated that pulp softening is accomplished by a coordinated action of several different cell wall-related enzymes. The mechanism is different from other commercially important fruits, such as strawberry, tomato, kiwifruit, and apple. The observed behavior of this new transcriptomic data confirms ethylene triggering is the main event that elicits fast pulp softening in papayas.


Asunto(s)
Carica/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Carica/enzimología , Carica/genética , Pared Celular/metabolismo , Etilenos/farmacología , Frutas/efectos de los fármacos , Frutas/enzimología , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Proteínas de Plantas/metabolismo , Biología de Sistemas/métodos , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...