Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(12): 1036-1054, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493359

RESUMEN

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.


Asunto(s)
Alelos , Modelos Animales de Enfermedad , Proteínas Musculares , Músculo Esquelético , Mutación , Miopatías Nemalínicas , Fenotipo , Sarcómeros , Pez Cebra , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Miopatías Nemalínicas/fisiopatología , Pez Cebra/genética , Animales , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Humanos , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Hum Mol Genet ; 31(5): 733-747, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34568901

RESUMEN

Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.


Asunto(s)
Distrofias Musculares , Pez Cebra , Animales , Humanos , Laminina/genética , Lisosomas/genética , Lisosomas/patología , Músculo Esquelético/patología , Distrofias Musculares/patología , Factores de Transcripción , Pez Cebra/genética
3.
Sci Adv ; 6(35): eabb4591, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923640

RESUMEN

Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility.

4.
PLoS One ; 15(8): e0231364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804943

RESUMEN

Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Fosfatidilinositoles/biosíntesis , Fosfatidilinositoles/metabolismo , Animales , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/biosíntesis , Fosfatos de Inositol/metabolismo , Lipogénesis , Desarrollo de Músculos/genética , Músculos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Front Mol Neurosci ; 13: 122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742259

RESUMEN

LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.

6.
Hum Mol Genet ; 28(24): 4186-4196, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31691805

RESUMEN

Dynamin 2 (DNM2) encodes a ubiquitously expressed large GTPase with membrane fission capabilities that participates in the endocytosis of clathrin-coated vesicles. Heterozygous mutations in DNM2 are associated with two distinct neuromuscular disorders, Charcot-Marie-Tooth disease (CMT) and autosomal dominant centronuclear myopathy (CNM). Despite extensive investigations in cell culture, the role of dynamin 2 in normal muscle development is poorly understood and the consequences of DNM2 mutations at the molecular level in vivo are not known. To address these gaps in knowledge, we developed transgenic zebrafish expressing either wild-type dynamin 2 or dynamin 2 with either a CNM or CMT mutation. Taking advantage of the live imaging capabilities of the zebrafish embryo, we establish the localization of wild-type and mutant dynamin 2 in vivo, showing for the first time distinctive dynamin 2 subcellular compartments. Additionally, we demonstrate that CNM-related DNM2 mutations are associated with protein mislocalization and aggregation. Lastly, we define core phenotypes associated with our transgenic mutant fish, including impaired motor function and altered muscle ultrastructure, making them the ideal platform for drug screening. Overall, using the power of the zebrafish, we establish novel insights into dynamin 2 localization and dynamics and provide the necessary groundwork for future studies examining dynamin 2 pathomechanisms and therapy development.


Asunto(s)
Dinamina II/genética , Dinamina II/metabolismo , Mutación , Animales , Animales Modificados Genéticamente , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Modelos Animales de Enfermedad , Endocitosis , Heterocigoto , Humanos , Músculo Esquelético/metabolismo , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Fenotipo , Activación Transcripcional , Pez Cebra/genética , Pez Cebra/metabolismo
7.
J Cell Sci ; 131(16)2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30054387

RESUMEN

Cilia are cellular antennae that are essential for human development and physiology. A large number of genetic disorders linked to cilium dysfunction are associated with proteins that localize to the ciliary transition zone (TZ), a structure at the base of cilia that regulates trafficking in and out of the cilium. Despite substantial effort to identify TZ proteins and their roles in cilium assembly and function, processes underlying maturation of TZs are not well understood. Here, we report a role for the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in TZ maturation in the Drosophila melanogaster male germline. We show that reduction of cellular PIP2 levels through ectopic expression of a phosphoinositide phosphatase or mutation of the type I phosphatidylinositol phosphate kinase Skittles induces formation of longer than normal TZs. These hyperelongated TZs exhibit functional defects, including loss of plasma membrane tethering. We also report that the onion rings (onr) allele of DrosophilaExo84 decouples TZ hyperelongation from loss of cilium-plasma membrane tethering. Our results reveal a requirement for PIP2 in supporting ciliogenesis by promoting proper TZ maturation.


Asunto(s)
Cilios/efectos de los fármacos , Cilios/fisiología , Cilios/ultraestructura , Drosophila melanogaster , Organogénesis , Fosfatidilinositol 4,5-Difosfato/farmacología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Mutación de Línea Germinal , Masculino , Organogénesis/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética
8.
Semin Cell Dev Biol ; 59: 2-9, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27321976

RESUMEN

Phosphatidylinositol phosphates (PIPs)1 are membrane lipids with crucial roles during cell morphogenesis, including the establishment of cytoskeletal organization, membrane trafficking, cell polarity, cell-cycle control and signaling. Recent studies in mice (Mus musculus), fruit flies (Drosophila melanogaster) and other organisms have defined germ cell intrinsic requirements for these lipids and their regulatory enzymes in multiple aspects of sperm development. In particular, PIP levels are crucial in germline stem cell maintenance, spermatogonial proliferation and survival, spermatocyte cytokinesis, spermatid polarization, sperm tail formation, nuclear shaping, and production of mature, motile sperm. Here, we briefly review the stages of spermatogenesis and discuss the roles of PIPs and their regulatory enzymes in male germ cell development.


Asunto(s)
Fosfatidilinositoles/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Animales , Humanos , Masculino , Meiosis , Mitosis , Modelos Biológicos , Espermatogénesis , Espermatozoides/citología
9.
PLoS Genet ; 11(11): e1005632, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26528720

RESUMEN

Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression.


Asunto(s)
Anafase , Ciclo Celular , Drosophila/citología , Animales
10.
Mol Cell ; 57(1): 165-78, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25544562

RESUMEN

Although endogenous siRNAs (endo-siRNAs) have been described in many species, still little is known about their endogenous utility. Here, we show that Drosophila hairpin RNAs (hpRNAs) generate an endo-siRNA class with predominant expression in testes. Although hpRNAs are universally recently evolved, we identify highly complementary protein-coding targets for all hpRNAs. Importantly, we find broad evidence for evolutionary divergences that preferentially maintain compensatory pairing between hpRNAs and targets, serving as first evidence for adaptive selection for siRNA-mediated target regulation in metazoans. We demonstrate organismal impact of hpRNA activity, since knockout of hpRNA1 derepresses its target ATP synthase-ß in testes and compromises spermatogenesis and male fertility. Moreover, we reveal surprising male-specific impact of RNAi factors on germ cell development and fertility, consistent with testis-directed function of the hpRNA pathway. Finally, the collected hpRNA loci chronicle an evolutionary timeline that reflects their origins from prospective target genes, mirroring a strategy described for plant miRNAs.


Asunto(s)
Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , ARN Interferente Pequeño/genética , Espermatogénesis/genética , Testículo/metabolismo , Adaptación Fisiológica/genética , Animales , Secuencia de Bases , Evolución Biológica , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Fertilidad/genética , Humanos , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Masculino , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo , Testículo/crecimiento & desarrollo
11.
Cell ; 158(6): 1293-1308, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215488

RESUMEN

Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative phosphorylation. Proteolytic cleavage releases a soluble 68 kDa fragment (Ft(mito)) that is imported into mitochondria. Ft(mito) binds directly to NADH dehydrogenase ubiquinone flavoprotein 2 (Ndufv2), a core component of complex I, stabilizing the holoenzyme. Loss of Ft leads to loss of complex I activity, increases in reactive oxygen species, and a switch to aerobic glycolysis. Defects in mitochondrial activity in ft mutants are independent of Hippo and PCP signaling and are reminiscent of the Warburg effect.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular/química , Polaridad Celular , Proteínas de Drosophila/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ojo/crecimiento & desarrollo , Genes Supresores de Tumor , Humanos , MAP Quinasa Quinasa 4/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Alas de Animales/crecimiento & desarrollo
12.
Spermatogenesis ; 2(3): 197-212, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23087837

RESUMEN

Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 µm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.

13.
Development ; 139(17): 3211-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22833128

RESUMEN

Gene expression is translationally regulated during many cellular and developmental processes. Translation can be modulated by affecting the recruitment of mRNAs to the ribosome, which involves recognition of the 5' cap structure by the cap-binding protein eIF4E. Drosophila has several genes encoding eIF4E-related proteins, but the biological role of most of them remains unknown. Here, we report that Drosophila eIF4E-3 is required specifically during spermatogenesis. Males lacking eIF4E-3 are sterile, showing defects in meiotic chromosome segregation, cytokinesis, nuclear shaping and individualization. We show that eIF4E-3 physically interacts with both eIF4G and eIF4G-2, the latter being a factor crucial for spermatocyte meiosis. In eIF4E-3 mutant testes, many proteins are present at different levels than in wild type, suggesting widespread effects on translation. Our results imply that eIF4E-3 forms specific eIF4F complexes that are essential for spermatogenesis.


Asunto(s)
Segregación Cromosómica/fisiología , Citocinesis/fisiología , Drosophila/fisiología , Factor 4E Eucariótico de Iniciación/metabolismo , Fertilidad/fisiología , Meiosis/fisiología , Animales , Western Blotting , Cromatografía de Afinidad , Segregación Cromosómica/genética , Citocinesis/genética , Cartilla de ADN/genética , Drosophila/metabolismo , Electroforesis en Gel Bidimensional , Fertilidad/genética , Inmunohistoquímica , Inmunoprecipitación , Masculino , Meiosis/genética , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Testículo/citología , Testículo/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
Development ; 138(6): 1111-20, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21343365

RESUMEN

Clathrin has previously been implicated in Drosophila male fertility and spermatid individualization. To understand further the role of membrane transport in this process, we analyzed the phenotypes of mutations in Drosophila auxilin (aux), a regulator of clathrin function, in spermatogenesis. Like partial loss-of-function Clathrin heavy chain (Chc) mutants, aux mutant males are sterile and produce no mature sperm. The reproductive defects of aux males were rescued by male germ cell-specific expression of aux, indicating that auxilin function is required autonomously in the germ cells. Furthermore, this rescue depends on both the clathrin-binding and J domains, suggesting that the ability of Aux to bind clathrin and the Hsc70 ATPase is essential for sperm formation. aux mutant spermatids show a deficit in formation of the plasma membrane during elongation, which probably disrupts the subsequent coordinated migration of investment cones during individualization. In wild-type germ cells, GFP-tagged clathrin localized to clusters of vesicular structures near the Golgi. These structures also contained the Golgi-associated clathrin adaptor AP-1, suggesting that they were Golgi-derived. By contrast, in aux mutant cells, clathrin localized to abnormal patches surrounding the Golgi and its colocalization with AP-1 was disrupted. Based on these results, we propose that Golgi-derived clathrin-positive vesicles are normally required for sustaining the plasma membrane increase necessary for spermatid differentiation. Our data suggest that Aux participates in forming these Golgi-derived clathrin-positive vesicles and that Aux, therefore, has a role in the secretory pathway.


Asunto(s)
Auxilinas/fisiología , Vesículas Cubiertas por Clatrina/fisiología , Drosophila/fisiología , Aparato de Golgi/fisiología , Espermatogénesis/fisiología , Animales , Animales Modificados Genéticamente , Auxilinas/genética , Auxilinas/metabolismo , Células Cultivadas , Vesículas Cubiertas por Clatrina/metabolismo , Citocinesis/genética , Citocinesis/fisiología , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Embrión no Mamífero , Femenino , Fertilidad/genética , Fertilidad/fisiología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Masculino , Modelos Biológicos , Vías Secretoras/genética , Vías Secretoras/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Espermatogénesis/genética
15.
Mol Biol Cell ; 21(9): 1546-55, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20237161

RESUMEN

During spermiogenesis, Drosophila melanogaster spermatids coordinate their elongation in interconnected cysts that become highly polarized, with nuclei localizing to one end and sperm tail growth occurring at the other. Remarkably little is known about the signals that drive spermatid polarity and elongation. Here we identify phosphoinositides as critical regulators of these processes. Reduction of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) by low-level expression of the PIP(2) phosphatase SigD or mutation of the PIP(2) biosynthetic enzyme Skittles (Sktl) results in dramatic defects in spermatid cysts, which become bipolar and fail to fully elongate. Defects in polarity are evident from the earliest stages of elongation, indicating that phosphoinositides are required for establishment of polarity. Sktl and PIP(2) localize to the growing end of the cysts together with the exocyst complex. Strikingly, the exocyst becomes completely delocalized when PIP(2) levels are reduced, and overexpression of Sktl restores exocyst localization and spermatid cyst polarity. Moreover, the exocyst is required for polarity, as partial loss of function of the exocyst subunit Sec8 results in bipolar cysts. Our data are consistent with a mechanism in which localized synthesis of PIP(2) recruits the exocyst to promote targeted membrane delivery and polarization of the elongating cysts.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Espermátides/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Exocitosis , Immunoblotting , Infertilidad Masculina/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Electrónica , Microscopía Fluorescente , Mutación , Fosfatidilinositol 4,5-Difosfato , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Espermátides/citología , Testículo/citología , Testículo/metabolismo , Testículo/ultraestructura
16.
J Cell Sci ; 121(Pt 7): 1076-84, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18334551

RESUMEN

Axonemes are microtubule-based organelles of crucial importance in the structure and function of eukaryotic cilia and flagella. Despite great progress in understanding how axonemes are assembled, the signals that initiate axoneme outgrowth remain unknown. Here, we identified phosphatidylinositol phosphates (phosphoinositides) as key regulators of early stages of axoneme outgrowth in Drosophila melanogaster spermatogenesis. In a study of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] function in developing Drosophila male germ cells, we depleted PtdIns(4,5)P2 by expression of a potent phosphoinositide phosphatase. Phosphatase expression dramatically inhibited sperm tail formation and perturbed microtubule organization in a manner reversible by co-expression of a PtdIns 4-phosphate 5-kinase. Depletion of PtdIns(4,5)P2 caused increased levels of basal body gamma-tubulin and altered the distribution of proteins known to be required for axoneme assembly. Examination of PtdIns(4,5)P2-depleted spermatids by transmission electron microscopy revealed defects in basal body docking to the nuclear envelope, and in axoneme architecture and integrity of the developing flagellar axoneme and axial sheath. Our results provide the first evidence that phosphoinositides act at several steps during flagellar biogenesis, coordinately regulating microtubule and membrane organization. They further suggest that phosphoinositides play evolutionarily conserved roles in flagella and cilia, across phyla and in structurally diverse cell types.


Asunto(s)
Membrana Celular/metabolismo , Flagelos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Flagelos/fisiología , Flagelos/ultraestructura , Masculino , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Fosfatidilinositol 4,5-Difosfato/fisiología , Fosfatos de Fosfatidilinositol/fisiología , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/fisiología , Cola del Espermatozoide/ultraestructura , Espermatogénesis/fisiología , Tubulina (Proteína)/metabolismo
17.
Protoplasma ; 231(3-4): 201-13, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17922265

RESUMEN

We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes.


Asunto(s)
Actinas/fisiología , Anafase , Segregación Cromosómica , Cromosomas/fisiología , Saltamontes/citología , Miosinas/fisiología , Espermatocitos/citología , Actinas/análisis , Actinas/antagonistas & inhibidores , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cromosomas/efectos de los fármacos , Citocalasina D/farmacología , Citocinesis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Masculino , Meiosis , Movimiento/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/análisis , Miosinas/antagonistas & inhibidores , Proteínas Asociadas a Matriz Nuclear/aislamiento & purificación , Proteínas Asociadas a Matriz Nuclear/metabolismo , Espermatocitos/fisiología , Espermatocitos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Tiazolidinas/farmacología
18.
J Cell Sci ; 120(Pt 13): 2190-204, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17591688

RESUMEN

Titin, the giant elastic protein found in muscles, is present in spindles of crane-fly and locust spermatocytes as determined by immunofluorescence staining using three antibodies, each raised against a different, spatially separated fragment of Drosophila titin (D-titin). All three antibodies stained the Z-lines and other regions in insect myofibrils. In western blots of insect muscle extract the antibodies reacted with high molecular mass proteins, ranging between rat nebulin (600-900 kDa) and rat titin (3000-4000 kDa). Mass spectrometry of the high molecular mass band from the Coomassie-Blue-stained gel of insect muscle proteins indicates that the protein the antibodies bind to is titin. The pattern of staining in insect spermatocytes was slightly different in the two species, but in general all three anti-D-titin antibodies stained the same components: the chromosomes, prophase and telophase nuclear membranes, the spindle in general, along kinetochore and non-kinetochore microtubules, along apparent connections between partner half-bivalents during anaphase, and various cytoplasmic components, including the contractile ring. That the same cellular components are stained in close proximity by the three different antibodies, each against a different region of D-titin, is strong evidence that the three antibodies identify a titin-like protein in insect spindles, which we identified by mass spectrometry analysis as being titin. The spindle matrix proteins skeletor, megator and chromator are present in many of the same structures, in positions very close to (or the same as) D-titin. Myosin and actin also are present in spindles in close proximity to D-titin. The varying spatial arrangements of these proteins during the course of division suggest that they interact to form a spindle matrix with elastic properties provided by a titin-like protein.


Asunto(s)
Actinas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Espermatocitos/metabolismo , Animales , Conectina , Drosophila melanogaster , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Masculino , Microtúbulos/ultraestructura , Proteínas Musculares/metabolismo , Músculos/embriología , Músculos/metabolismo , Músculos/ultraestructura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Profase/fisiología , Proteínas Quinasas/metabolismo , Ratas , Espermatocitos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Telofase/fisiología
19.
BMC Cell Biol ; 8: 15, 2007 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-17509155

RESUMEN

BACKGROUND: Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. RESULTS: Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine) on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. CONCLUSION: We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring.


Asunto(s)
Actinas/metabolismo , Citocinesis , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Inhibidores Enzimáticos/farmacología , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Fosfolipasas de Tipo C/antagonistas & inhibidores , Alquilación/efectos de los fármacos , Animales , Azepinas/química , Azepinas/farmacología , Bovinos , Citocinesis/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Estrenos/farmacología , Etilmaleimida/química , Etilmaleimida/farmacología , Masculino , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Naftalenos/química , Naftalenos/farmacología , Éteres Fosfolípidos/química , Éteres Fosfolípidos/farmacología , Fosforilación/efectos de los fármacos , Pirrolidinonas/farmacología , Espermatocitos/citología , Espermatocitos/efectos de los fármacos , Espermatocitos/enzimología , Fosfolipasas de Tipo C/metabolismo
20.
Cell Chromosome ; 6: 1, 2007 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-17381845

RESUMEN

Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA