Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35740485

RESUMEN

Long non-coding RNAs are increasingly being recognized as cancer biomarkers in various malignancies, acting as either tumor suppressors or oncogenes. The long non-coding MALINC1 intergenic RNA was identified as significantly upregulated in breast ductal carcinoma in situ. The aim of this study was to characterize MALINC1 expression, localization, and phenotypic and molecular effects in non-invasive and invasive breast cancer cells. We determined that MALINC1 is an estrogen-estrogen receptor-modulated lncRNA enriched in the cytoplasmic fraction of luminal A/B breast cancer cells that is associated with worse overall survival in patients with primary invasive breast carcinomas. Transcriptomic studies in normal and DCIS cells identified the main signaling pathways modulated by MALINC1, which mainly involve bioprocesses related to innate and adaptive immune responses, extracellular matrix remodeling, cell adhesion, and activation of AP-1 signaling pathway. We determined that MALINC1 induces premalignant phenotypic changes by increasing cell migration in normal breast cells. Moreover, high MALINC1 expression in invasive carcinomas was associated with a pro-tumorigenic immune environment and a favorable predicted response to immunotherapy both in luminal and basal-like subtypes compared with low-MALINC1-expression tumors. We conclude that MALINC1 behaves as an oncogenic and immune-related lncRNA involved with early-stage breast cancer progression.

2.
Front Oncol ; 11: 783211, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869037

RESUMEN

The long-non-coding HOX transcript antisense intergenic RNA (HOTAIR) was identified as significantly upregulated in breast ductal carcinoma in situ (DCIS). The aim of this study was to characterize the phenotypic effects and signaling pathways modulated by HOTAIR in early-stage breast cancer progression. We determined that HOTAIR induces premalignant phenotypic changes by increasing cell proliferation, migration, invasion and in vivo growth in normal and DCIS breast cell lines. Transcriptomic studies (RNA-seq) identified the main signaling pathways modulated by HOTAIR which include bioprocesses related to epithelial to mesenchymal transition, cell migration, extracellular matrix remodeling and activation of several signaling pathways (HIF1A, AP1 and FGFR). Similar pathways were identified as activated in primary invasive breast carcinomas with HOTAIR over-expression. We conclude that HOTAIR over-expression behaves as a positive regulator of cell growth and migration both in normal and DCIS breast cells involved with early-stage breast cancer progression.

3.
Infect Genet Evol ; 90: 104749, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33540087

RESUMEN

Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.


Asunto(s)
Genoma Viral , Nucleopoliedrovirus/genética , Spodoptera/virología , Animales , Argentina , Larva/genética , Larva/virología , Nucleopoliedrovirus/clasificación , Spodoptera/crecimiento & desarrollo
4.
Nucleic Acids Res ; 49(D1): D452-D457, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237313

RESUMEN

The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new levels (Clan > Family) requiring sequence similarity and describing repeat motifs in collaboration with Pfam. Data growth has been addressed with improved mechanisms for browsing the classification hierarchy. A new UniProt-centric view unifies the increasingly frequent annotation of structures from identical or similar sequences. This update of RepeatsDB aligns with our commitment to develop a resource that extracts, organizes and distributes specialized information on tandem repeat protein structures.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Secuencias Repetitivas de Aminoácido , Secuencias Repetidas en Tándem , Ontología de Genes , Células HEK293 , Células HeLa , Humanos , Reproducibilidad de los Resultados , Estadística como Asunto , Interfaz Usuario-Computador
5.
mBio ; 11(4)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694138

RESUMEN

Prokaryote genomes exhibit a wide range of GC contents and codon usages, both resulting from an interaction between mutational bias and natural selection. In order to investigate the basis underlying specific codon changes, we performed a comprehensive analysis of 29 different prokaryote families. The analysis of core gene sets with increasing ancestries in each family lineage revealed that the codon usages became progressively more adapted to the tRNA pools. While, as previously reported, highly expressed genes presented the most optimized codon usage, the singletons contained the less selectively favored codons. The results showed that usually codons with the highest translational adaptation were preferentially enriched. In agreement with previous reports, a C bias in 2- to 3-fold pyrimidine-ending codons, and a U bias in 4-fold codons occurred in all families, irrespective of the global genomic GC content. Furthermore, the U biases suggested that U3-mRNA-U34-tRNA interactions were responsible for a prominent codon optimization in both the most ancestral core and the highly expressed genes. A comparative analysis of sequences that encode conserved (cr) or variable (vr) translated products, with each one being under high (HEP) and low (LEP) expression levels, demonstrated that the efficiency was more relevant (by a factor of 2) than accuracy to modeling codon usage. Finally, analysis of the third position of codons (GC3) revealed that in genomes with global GC contents higher than 35 to 40%, selection favored a GC3 increase, whereas in genomes with very low GC contents, a decrease in GC3 occurred. A comprehensive final model is presented in which all patterns of codon usage variations are condensed in four distinct behavioral groups.IMPORTANCE The prokaryotic genomes-the current heritage of the most ancient life forms on earth-are comprised of diverse gene sets, all characterized by varied origins, ancestries, and spatial-temporal expression patterns. Such genetic diversity has for a long time raised the question of how cells shape their coding strategies to optimize protein demands (i.e., product abundance) and accuracy (i.e., translation fidelity) through the use of the same genetic code in genomes with GC contents that range from less than 20 to more than 80%. Here, we present evidence on how codon usage is adjusted in the prokaryotic tree of life and on how specific biases have operated to improve translation. Through the use of proteome data, we characterized conserved and variable sequence domains in genes of either high or low expression level and quantitated the relative weight of efficiency and accuracy-as well as their interaction-in shaping codon usage in prokaryotes.


Asunto(s)
Archaea/genética , Bacterias/genética , Uso de Codones , Codón/genética , Código Genético , ARN de Transferencia/genética , Archaea/clasificación , Bacterias/clasificación , Composición de Base , Mutación , Biosíntesis de Proteínas , Proteoma
6.
J Biotechnol ; 307: 175-181, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31715205

RESUMEN

Polyhedron envelope protein (PEP) is the major component of the calyx that surrounds the baculovirus occlusion body (OB). PEP has been associated with the stabilization and resistance of polyhedra in the environment. Due to the abundant levels of PEP in OBs, we decided to use this protein as a fusion partner to redirect foreign proteins to baculovirus polyhedra. In this study we developed a strategy that involves the generation of a monoclonal transformed insect cell line expressing a protein of interest fused to the the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) N-terminus of PEP that enables the packaging of foreign proteins into the OBs without generating a recombinant baculovirus. This proved to be an efficient platform that could be exploited to improve wild type baculovirus for their use as bioinsecticides without facing the concerns of releasing genetically modified DNA to the environment and bypassing the associated regulatory issues. We demonstrated, using immunological, proteomic and microscopy techniques, that the envelope of AgMNPV OBs can effectively trap chimeric proteins in an infected insect cell line expressing AgMNPV PEP fused to the enhanced green fluorescent protein (eGFP). Furthermore, packaging of chimeric PEP also took place with heterologous OBs such as those of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), another group I alphabaculovirus.


Asunto(s)
Baculoviridae/metabolismo , Nucleopoliedrovirus/metabolismo , Cuerpos de Oclusión Viral/metabolismo , Proteínas de la Matriz de Cuerpos de Oclusión/metabolismo , Proteómica , Animales , Baculoviridae/genética , Línea Celular , Genes Reporteros , Insectos , Nucleopoliedrovirus/genética , Cuerpos de Oclusión Viral/genética , Proteínas de la Matriz de Cuerpos de Oclusión/genética , Proteínas Recombinantes
7.
PLoS One ; 14(2): e0207735, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30753194

RESUMEN

Within family Baculoviridae, members of the Betabaculovirus genus are employed as biocontrol agents against lepidopteran pests, either alone or in combination with selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. aporema) and is a promising biopesticide. Because occlusion bodies (OBs) play a key role in baculovirus horizontal transmission, we investigated the composition of EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins that are included in the OBs during the final stages of larval infection. Our data provides experimental validation of several annotated hypothetical coding sequences. Proteogenomic mapping against genomic sequence detected a previously unannotated ac110-like core gene and a putative translation fusion product of ORFs epap48 and epap49. Comparative studies of the proteomes available for the family Baculoviridae highlight the conservation of core gene products as parts of the occluded virion. Two proteins specific for betabaculoviruses (Epap48 and Epap95) are incorporated into OBs. Moreover, quantification based on emPAI values showed that Epap95 is one of the most abundant components of EpapGV OBs.


Asunto(s)
Baculoviridae/genética , Genoma Viral/genética , Brotes de la Planta/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Agentes de Control Biológico/farmacología , Genómica/métodos , Lepidópteros/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Proteoma/genética
8.
PLoS One ; 13(8): e0202598, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30133523

RESUMEN

A new isolate of the Spodoptera frugiperda granulovirus, SfGV ARG, was completely sequenced and analyzed. The SfGV ARG genome is 139,812 bp long and encodes 151 putative open reading frames. Of these ORFs, 56 were found in betabaculoviruses, 19 of which are present only in GVs closely related to SfGV. Seven ORFs found homologs in this small GV group and also in noctuid NPVs. ORF066 codes a 74 amino acid protein, overlapped with nudix gene, with several homologs in baculovirus, found by tblastn search. Comparison with the genome of the Colombian isolate SfGV VG008 resulted in SfGV being 1101 bp smaller and lacking a homologue of VG008 ORF084, which codes for Lef-7. However, we found that ORF051 shows remote homology to Lef-7 proteins. Moreover, analysis of ORF051 along with Lef-7 proteins coded by a group of noctuid specific GVs and NPVs indicated that Lef-7 proteins coded by these viruses include three F-box domains in contrast to the single one reported for AcMNPV Lef-7. SfGV ARG genome also contains a split photolyase as a distinct feature not found in VG008. BlastX analysis revealed that a complete photolyase is coded considering a putative frameshift in a poly-A tract, which resembles known slippery sequences involved in programmed ribosome frameshifting.


Asunto(s)
Genómica , Granulovirus/genética , Spodoptera/genética , Proteínas Virales/genética , Secuencia de Aminoácidos/genética , Animales , Baculoviridae/genética , Proteínas F-Box/genética , Genoma Viral/genética , Sistemas de Lectura Abierta/genética , Filogenia , Análisis de Secuencia de ADN , Spodoptera/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...