Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Redox Biol ; 72: 103150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599016

RESUMEN

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.


Asunto(s)
Encéfalo , Glutatión , Fluidez de la Membrana , Membranas Mitocondriales , Enfermedad de Niemann-Pick Tipo C , S-Adenosilmetionina , Animales , Ratones , S-Adenosilmetionina/metabolismo , Membranas Mitocondriales/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Glutatión/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo , Proteína Niemann-Pick C1 , Modelos Animales de Enfermedad , Ratones Noqueados , Fosfatidilcolinas/metabolismo
2.
Bioorg Chem ; 145: 107233, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422591

RESUMEN

Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.


Asunto(s)
Ceramidas , Oxidorreductasas , Ceramidas/farmacología , Ceramidas/química , Oxidorreductasas/metabolismo , Ciclopropanos/farmacología
3.
J Lipid Res ; 65(3): 100520, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369184

RESUMEN

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Asunto(s)
Amidohidrolasas , Colorantes Fluorescentes , Etanolaminas/química , Lípidos
4.
Cancers (Basel) ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980769

RESUMEN

Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3ß, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.

5.
J Enzyme Inhib Med Chem ; 38(1): 343-348, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36519337

RESUMEN

Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.


Asunto(s)
Ceramidasa Ácida , Neoplasias , Humanos , Ceramidasa Ácida/antagonistas & inhibidores , Apoptosis , Ceramidas/química , Bibliotecas de Moléculas Pequeñas
6.
J Org Chem ; 87(24): 16351-16367, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36441972

RESUMEN

Ceramides (Cer) are bioactive sphingolipids that have been proposed as potential disease biomarkers since they are involved in several cellular stress responses, including apoptosis and senescence. 1-Deoxyceramides (1-deoxyCer), a particular subtype of noncanonical sphingolipids, have been linked to the pathogenesis of type II diabetes. To investigate the metabolism of these bioactive lipids, as well as to have a better understanding of the signaling processes where they participate, it is essential to expand the toolbox of fluorescent sphingolipid probes exhibiting complementary subcellular localization. Herein, we describe a series of new sphingolipid probes tagged with two different organic fluorophores, a far-red/NIR-emitting coumarin derivative (COUPY) and a green-emitting BODIPY. The assembly of the probes involved a combination of olefin cross metathesis and click chemistry reactions as key steps, and these fluorescent ceramide analogues exhibited excellent emission quantum yields, being the Stokes' shifts of the COUPY derivatives much higher than those of the BODIPY counterparts. Confocal microscopy studies in HeLa cells confirmed an excellent cellular permeability for these sphingolipid probes and revealed that most of the vesicles stained by COUPY probes were either lysosomes or endosomes, whereas BODIPY probes accumulated either in Golgi apparatus or in nonlysosomal intracellular vesicles. The fact that the two sets of fluorescent Cer probes have such different staining patterns indicates that their subcellular distribution is not entirely defined by the sphingolipid moiety but rather influenced by the fluorophore.


Asunto(s)
Ceramidas , Diabetes Mellitus Tipo 2 , Humanos , Ceramidas/química , Ceramidas/metabolismo , Células HeLa , Esfingolípidos/química , Esfingolípidos/metabolismo , Colorantes Fluorescentes/química , Ionóforos
7.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806262

RESUMEN

Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5' AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Autofagia , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Endosomas , Fibroblastos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Esfingolípidos/farmacología , Esfingosina/análogos & derivados
8.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681567

RESUMEN

Senile plaque formation as a consequence of amyloid-ß peptide (Aß) aggregation constitutes one of the main hallmarks of Alzheimer's disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aß production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Ceramidas/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Erucicos/metabolismo , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-6/efectos adversos , Gangliósidos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos
9.
Redox Biol ; 45: 102052, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175669

RESUMEN

Niemann-Pick type C (NPC) disease, a lysosomal storage disorder caused by defective NPC1/NPC2 function, results in the accumulation of cholesterol and glycosphingolipids in lysosomes of affected organs, such as liver and brain. Moreover, increase of mitochondrial cholesterol (mchol) content and impaired mitochondrial function and GSH depletion contribute to NPC disease. However, the underlying mechanism of mchol accumulation in NPC disease remains unknown. As STARD1 is crucial in intramitochondrial cholesterol trafficking and acid ceramidase (ACDase) has been shown to regulate STARD1, we explored the functional relationship between ACDase and STARD1 in NPC disease. Liver and brain of Npc1-/- mice presented a significant increase in mchol levels and STARD1 expression. U18666A, an amphiphilic sterol that inhibits lysosomal cholesterol efflux, increased mchol levels in hepatocytes from Stard1f/f mice but not Stard1ΔHep mice. We dissociate the induction of STARD1 expression from endoplasmic reticulum stress, and establish an inverse relationship between ACDase and STARD1 expression and LRH-1 levels. Hepatocytes from Npc1+/+ mice treated with U18666A exhibited increased mchol accumulation, STARD1 upregulation and decreased ACDase expression, effects that were reversed by cholesterol extraction with 2-hydroxypropyl-ß-cyclodextrin. Moreover, transfection of fibroblasts from NPC patients with ACDase, decreased STARD1 expression and mchol accumulation, resulting in increased mitochondrial GSH levels, improved mitochondrial functional performance, decreased oxidative stress and protected NPC fibroblasts against oxidative stress-mediated cell death. Our results demonstrate a cholesterol-dependent inverse relationship between ACDase and STARD1 and provide a novel approach to target the accumulation of cholesterol in mitochondria in NPC disease.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Fosfoproteínas/metabolismo , Ceramidasa Ácida/metabolismo , Animales , Colesterol/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Estrés Oxidativo
10.
Eur J Med Chem ; 216: 113296, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677352

RESUMEN

Acid (AC), neutral (NC) and alkaline ceramidase 3 (ACER3) are the most ubiquitous ceramidases and their therapeutic interest as targets in cancer diseases has been well sustained. This supports the importance of discovering potent and specific inhibitors for further use in combination therapies. Although several ceramidase inhibitors have been reported, most of them target AC and a few focus on NC. In contrast, well characterized ACER3 inhibitors are lacking. Here we report on the synthesis and screening of two series of 1-deoxy(dihydro)ceramide analogs on the three enzymes. Activity was determined using fluorogenic substrates in recombinant human NC (rhNC) and both lysates and intact cells enriched in each enzyme. None of the molecules elicited a remarkable AC inhibitory activity in either experimental setup, while using rhNC, several compounds of both series were active as non-competitive inhibitors with Ki values between 1 and 5 µM. However, a dramatic loss of potency occurred in NC-enriched cell lysates and no activity was elicited in intact cells. Interestingly, several compounds of Series 2 inhibited ACER3 dose-dependently in both cell lysates and intact cells with IC50's around 20 µM. In agreement with their activity in live cells, they provoked a significant increase in the amounts of ceramides. Overall, this study identifies highly selective ACER3 activity blockers in intact cells, opening the door to further medicinal chemistry efforts aimed at developing more potent and specific compounds.


Asunto(s)
Ceramidasa Alcalina/antagonistas & inhibidores , Ceramidas/química , Ceramidasa Alcalina/genética , Ceramidasa Alcalina/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ceramidas/metabolismo , Ceramidas/farmacología , Cromatografía Líquida de Alta Presión , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Espectrometría de Masas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Esfingolípidos/análisis , Especificidad por Sustrato
11.
Org Biomol Chem ; 19(11): 2456-2467, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33650618

RESUMEN

The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.


Asunto(s)
Ceramidas/metabolismo , Colorantes Fluorescentes/síntesis química , Lípidos/síntesis química , Oxidorreductasas/metabolismo , Ácidos Palmíticos/química , Animales , Línea Celular , Química Clic , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Espectrometría de Fluorescencia , Espectrometría de Masas en Tándem
12.
Adv Sci (Weinh) ; 8(3): 2003468, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552873

RESUMEN

HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.

13.
Autophagy ; 17(6): 1349-1366, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32397857

RESUMEN

ABTL0812 is a first-in-class small molecule with anti-cancer activity, which is currently in clinical evaluation in a phase 2 trial in patients with advanced endometrial and squamous non-small cell lung carcinoma (NCT03366480). Previously, we showed that ABTL0812 induces TRIB3 pseudokinase expression, resulting in the inhibition of the AKT-MTORC1 axis and macroautophagy/autophagy-mediated cancer cell death. However, the precise molecular determinants involved in the cytotoxic autophagy caused by ABTL0812 remained unclear. Using a wide range of biochemical and lipidomic analyses, we demonstrated that ABTL0812 increases cellular long-chain dihydroceramides by impairing DEGS1 (delta 4-desaturase, sphingolipid 1) activity, which resulted in sustained ER stress and activated unfolded protein response (UPR) via ATF4-DDIT3-TRIB3 that ultimately promotes cytotoxic autophagy in cancer cells. Accordingly, pharmacological manipulation to increase cellular dihydroceramides or incubation with exogenous dihydroceramides resulted in ER stress, UPR and autophagy-mediated cancer cell death. Importantly, we have optimized a method to quantify mRNAs in blood samples from patients enrolled in the ongoing clinical trial, who showed significant increased DDIT3 and TRIB3 mRNAs. This is the first time that UPR markers are reported to change in human blood in response to any drug treatment, supporting their use as pharmacodynamic biomarkers for compounds that activate ER stress in humans. Finally, we found that MTORC1 inhibition and dihydroceramide accumulation synergized to induce autophagy and cytotoxicity, phenocopying the effect of ABTL0812. Given the fact that ABTL0812 is under clinical development, our findings support the hypothesis that manipulation of dihydroceramide levels might represents a new therapeutic strategy to target cancer.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATG: autophagy related; ATF4: activating transcription factor 4; Cer: ceramide; DDIT3: DNA damage inducible transcript 3; DEGS1: delta 4-desaturase, sphingolipid 1; dhCer: dihydroceramide; EIF2A: eukaryotic translation initiation factor 2 alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; NSCLC: non-small cell lung cancer; THC: Δ9-tetrahydrocannabinol; TRIB3: tribbles pseudokinase 3; XBP1: X-box binding protein 1; UPR: unfolded protein response.


Asunto(s)
Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Ácidos Linoleicos/farmacología , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Ceramidas/farmacología , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico
14.
Cancer Res ; 80(22): 5011-5023, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32998995

RESUMEN

Disturbance of sphingolipid metabolism may represent a novel therapeutic target in metastatic melanoma, the most lethal form of skin cancer. ß-Galactosylceramidase (GALC) removes ß-galactose from galactosylceramide and other sphingolipids. In this study, we show that downregulation of galcb, a zebrafish ortholog of human GALC, affects melanoblast and melanocyte differentiation in zebrafish embryos, suggesting a possible role for GALC in melanoma. On this basis, the impact of GALC expression in murine B16-F10 and human A2058 melanoma cells was investigated following its silencing or upregulation. Galc knockdown hampered growth, motility, and invasive capacity of B16-F10 cells and their tumorigenic and metastatic activity when grafted in syngeneic mice or zebrafish embryos. Galc-silenced cells displayed altered sphingolipid metabolism and increased intracellular levels of ceramide, paralleled by a nonredundant upregulation of Smpd3, which encodes for the ceramide-generating enzyme neutral sphingomyelinase 2. Accordingly, GALC downregulation caused SMPD3 upregulation, increased ceramide levels, and inhibited the tumorigenic activity of human melanoma A2058 cells, whereas GALC upregulation exerted opposite effects. In concordance with information from melanoma database mining, RNAscope analysis demonstrated a progressive increase of GALC expression from common nevi to stage IV human melanoma samples that was paralleled by increases in microphthalmia transcription factor and tyrosinase immunoreactivity inversely related to SMPD3 and ceramide levels. Overall, these findings indicate that GALC may play an oncogenic role in melanoma by modulating the levels of intracellular ceramide, thus providing novel opportunities for melanoma therapy. SIGNIFICANCE: Data from zebrafish embryos, murine and human cell melanoma lines, and patient-derived tumor specimens indicate that ß-galactosylceramidase plays an oncogenic role in melanoma and may serve as a therapeutic target.


Asunto(s)
Ceramidas/metabolismo , Galactosilceramidasa/metabolismo , Melanoma/patología , Neoplasias Cutáneas/patología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Galactosilceramidasa/genética , Silenciador del Gen , Humanos , Neoplasias Pulmonares/secundario , Melanocitos/citología , Melanocitos/enzimología , Melanoma/metabolismo , Melanoma/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Neoplasias Cutáneas/metabolismo , Esfingolípidos/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Regulación hacia Arriba , Pez Cebra
15.
EMBO J ; 39(15): e104749, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32525588

RESUMEN

CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Ceramidas/inmunología , Memoria Inmunológica , Receptores CCR5/deficiencia , Animales , Antígenos/genética , Linfocitos T CD4-Positivos/citología , Ceramidas/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Receptores CCR5/inmunología
16.
Chem Sci ; 11(48): 13044-13051, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34094488

RESUMEN

The use of intact cells in medical research offers a number of advantages over employing cell-free systems. In diagnostics, cells isolated from liquid biopsies can be directly used, speeding up the time of analysis and diminishing the risk of protein degradation by sample manipulation. In drug discovery, studies in live cells take into account aspects neglected in cell-free systems, such as uptake, metabolization, and subcellular concentration by compartmentalization of potential drug candidates. Therefore, probes for studies in cellulo are of paramount importance. Acid ceramidase (AC) is a lysosomal enzyme that hydrolyses ceramides into sphingoid bases and fatty acids. The essential role of this enzyme in the outburst and progress of several diseases, some of them still incurable, is well sustained. Despite the great clinical relevance of AC as a biomarker and therapeutic target, the specific monitoring of AC activity in live cells has remained elusive due to the concomitant existence of neutral and alkaline ceramidases. In this work, we report that 1-deoxydihydroceramides are exclusively hydrolysed by AC. Using N-octanoyl-18-azidodeoxysphinganine as a probe and a BODIPY-substituted bicyclononyne, we show the click-reliant predominant staining of lysosomes, with extra-lysosomal labeling also occurring in some cells. Importantly, using pharmacological and genetic tools together with high resolution mass spectrometry, we demonstrate that both lysosomal and extra-lysosomal staining are AC-dependent. These findings are translated into the specific flow cytometry monitoring of AC activity in intact cells, which fills an important gap in the field of diseases linked to altered AC activity.

17.
J Org Chem ; 85(2): 419-429, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31860798

RESUMEN

The synthesis of a series of vinylated analogues of sphingosine-1-phosphate together with their unambiguous configurational assignment by VCD methods is reported. Among them, compound RBM10-8 can irreversibly inhibit human sphingosine-1-phosphate lyase (hS1PL) while behaving also as an enzyme substrate. These findings, together with the postulated mechanism for S1PL activity, reinforce the role of RBM10-8 as a new mechanism-based hS1PL inhibitor.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Aldehído-Liasas/química , Secuencia de Aminoácidos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Estereoisomerismo
18.
Mol Cancer Res ; 18(3): 352-363, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31744877

RESUMEN

Acute myeloid leukemia (AML) is a disease characterized by uncontrolled proliferation of immature myeloid cells in the blood and bone marrow. The 5-year survival rate is approximately 25%, and recent therapeutic developments have yielded little survival benefit. Therefore, there is an urgent need to identify novel therapeutic targets. We previously demonstrated that acid ceramidase (ASAH1, referred to as AC) is upregulated in AML and high AC activity correlates with poor patient survival. Here, we characterized a novel AC inhibitor, SACLAC, that significantly reduced the viability of AML cells with an EC50 of approximately 3 µmol/L across 30 human AML cell lines. Treatment of AML cell lines with SACLAC effectively blocked AC activity and induced a decrease in sphingosine 1-phosphate and a 2.5-fold increase in total ceramide levels. Mechanistically, we showed that SACLAC treatment led to reduced levels of splicing factor SF3B1 and alternative MCL-1 mRNA splicing in multiple human AML cell lines. This increased proapoptotic MCL-1S levels and contributed to SACLAC-induced apoptosis in AML cells. The apoptotic effects of SACLAC were attenuated by SF3B1 or MCL-1 overexpression and by selective knockdown of MCL-1S. Furthermore, AC knockdown and exogenous C16-ceramide supplementation induced similar changes in SF3B1 level and MCL-1S/L ratio. Finally, we demonstrated that SACLAC treatment leads to a 37% to 75% reduction in leukemic burden in two human AML xenograft mouse models. IMPLICATIONS: These data further emphasize AC as a therapeutic target in AML and define SACLAC as a potent inhibitor to be further optimized for future clinical development.


Asunto(s)
Ceramidas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Esfingolípidos/metabolismo , Anciano , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones Endogámicos NOD , Ratones SCID , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Isoformas de Proteínas , Transfección , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Lipid Res ; 60(9): 1590-1602, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31363040

RESUMEN

The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.


Asunto(s)
Mitocondrias/metabolismo , Esfingolípidos/metabolismo , Amidas/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ceramidasas/metabolismo , Ceramidas/metabolismo , Ácidos Grasos Insaturados/farmacología , Glucosiltransferasas/metabolismo , Células HL-60 , Humanos , Immunoblotting , Lisofosfolípidos/metabolismo , Espectrometría de Masas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esfingosina/análogos & derivados , Esfingosina/metabolismo
20.
J Am Chem Soc ; 141(19): 7736-7742, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31030513

RESUMEN

Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.


Asunto(s)
Ceramidasa Ácida/metabolismo , Imagen Molecular , Células A549 , Ceramidasa Ácida/antagonistas & inhibidores , Supervivencia Celular , Inhibidores Enzimáticos/farmacología , Humanos , Sondas Moleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...