Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr A Found Adv ; 71(Pt 4): 361-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25970297

RESUMEN

A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO4. Resonant (or 'anomalous') X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics).

2.
Phys Rev Lett ; 108(23): 237201, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-23003983

RESUMEN

The coupling of magnetic chiralities to the ferroelectric polarization in multiferroic RbFe(MoO4)2 is investigated by neutron spherical polarimetry. Because of the axiality of the crystal structure below T(c)=190 K, helicity and triangular chirality are symmetric-exchange coupled, explaining the onset of the ferroelectricity in this proper-screw magnetic structure--a mechanism that can be generalized to other systems with ferroaxial distortions in the crystal structure. With an applied electric field, we demonstrate control of the chiralities in both structural domains simultaneously.

3.
J Synchrotron Radiat ; 16(Pt 6): 778-87, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19844014

RESUMEN

An in-vacuum double-phase-plate diffractometer for performing polarization scans combined with resonant X-ray diffraction experiments is presented. The use of two phase plates enables the correction of some of the aberration effects owing to the divergence of the beam and its energy spread. A higher rate of rotated polarization is thus obtained in comparison with a system with only a single retarder. Consequently, thinner phase plates can be used to obtain the required rotated polarization rate. These results are particularly interesting for applications at low energy (e.g. 4 keV) where the absorption owing to the phase plate(s) plays a key role in the feasibility of these experiments. Measurements by means of polarization scans at the uranium M(4) edge on UO(2) enable the contributions of the magnetic and quadrupole ordering in the material to be disentangled.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...