Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut ; 72(10): 1887-1903, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399271

RESUMEN

OBJECTIVE: Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN: We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS: We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION: HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.


Asunto(s)
Antígenos CD , Apirasa , Neoplasias Colorrectales , Neoplasias Hepáticas , Linfocitos T , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfocitos T , Apirasa/genética , Antígenos CD/genética , Ingeniería Celular
2.
Life Sci Alliance ; 5(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724271

RESUMEN

We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.


Asunto(s)
Hígado , Subgrupos de Linfocitos T , Citometría de Flujo/métodos , Flujo de Trabajo
3.
Sci Transl Med ; 13(575)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408185

RESUMEN

Although chemotherapeutic agents have been used for decades, the mechanisms of action, mechanisms of resistance, and the best treatment schedule remain elusive. Mitomycin C (MMC) is the gold standard treatment for non-muscle-invasive bladder cancer (NMIBC). However, it is effective only in a subset of patients, suggesting that, aside from cytotoxicity, other mechanisms could be involved in mediating the success of the treatment. Here, we showed that MMC promotes immunogenic cell death (ICD) and in vivo tumor protection. MMC-induced ICD relied on metabolic reprogramming of tumor cells toward increased oxidative phosphorylation. This favored increased mitochondrial permeability leading to the cytoplasmic release of mitochondrial DNA, which activated the inflammasome for efficient IL-1ß (interleukin-1ß) secretion that promoted dendritic cell maturation. Resistance to ICD was associated with mitochondrial dysfunction related to low abundance of complex I of the respiratory chain. Analysis of complex I in patient tumors indicated that low abundance of this mitochondrial complex was associated with recurrence incidence after chemotherapy in patients with NMIBC. The identification of mitochondria-mediated ICD as a mechanism of action of MMC offers opportunities to optimize bladder cancer management and provides potential markers of treatment efficacy that could be used for patient stratification.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Administración Intravesical , Antibióticos Antineoplásicos/uso terapéutico , Humanos , Muerte Celular Inmunogénica , Mitocondrias , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
4.
J Urol ; 205(1): 86-93, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32856979

RESUMEN

PURPOSE: The dogma that urine is sterile has been overturned and dysbiosis of the urinary microbiome has been linked to many urological disorders. We tested the hypothesis that the urinary microbial composition may be different between men with or without bladder cancer in catheter collected urines, bladder washouts and midstream voided urines, and may be dependent on tumor staging. MATERIALS AND METHODS: Liquid samples were collected from male patients with bladder cancer, and sex and age matched nonneoplastic controls. Total DNA was extracted and processed for 16S rRNA gene sequencing. Bioinformatic analysis for microbial classification was performed to assess diversity and variations. RESULTS: The urinary microbiome associated with catheter collected urine samples of patients with bladder cancer was characterized by a significantly increased abundance of Veillonella (p=0.04) and Corynebacterium (p=0.03), and decreased Ruminococcus (p=0.03) compared to controls, with differences exacerbating with disease progression. Compared to catheterized urines, bladder cancer washouts showed the specific increase of some taxa, like Burkholderiaceae (p=0.014), whereas midstream urines were enriched in Streptococcus (p <0.0001), Enterococcus (p <0.0001), Corynebacterium (p=0.038) and Fusobacterium (p <0.0001). CONCLUSIONS: The bladder is colonized by endogenous bacteria and microbial modifications characterize the microbiome of patients with bladder cancer. Different microbial compositions can be characterized by changing sampling strategy. These results pave the way for exploring new diagnostic and therapeutic options based on the manipulation of the bacterial community.


Asunto(s)
Disbiosis/diagnóstico , Microbiota/genética , Neoplasias de la Vejiga Urinaria/orina , Vejiga Urinaria/microbiología , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , ADN Bacteriano/aislamiento & purificación , Disbiosis/microbiología , Disbiosis/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Prospectivos , ARN Ribosómico 16S/genética , Urinálisis/métodos , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/microbiología , Neoplasias de la Vejiga Urinaria/patología , Cateterismo Urinario/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...