Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Braz J Microbiol ; 52(1): 363-372, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33247398

RESUMEN

INTRODUCTION: Freshwater ecosystems provide propitious conditions for the acquisition and spread of antibiotic resistance genes (ARGs), and integrons play an important role in this process. MATERIAL AND METHODS: In the present study, the diversity of putative environmental integron-cassettes, as well as their potential bacterial hosts in the Velhas River (Brazil), was explored through intI-attC and 16S rRNA amplicons deep sequencing. RESULTS AND DISCUSSION: ORFs related to different biological processes were observed, from DNA integration to oxidation-reduction. ARGs-cassettes were mainly associated with class 1 mobile integrons carried by pathogenic Gammaproteobacteria, and possibly sedentary chromosomal integrons hosted by Proteobacteria and Actinobacteria. Two putative novel ARG-cassettes homologs to fosB3 and novA were detected. Regarding 16SrRNA gene analysis, taxonomic and functional profiles unveiled Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria as dominant phyla. Betaproteobacteria, Alphaproteobacteria, and Actinobacteria classes were the main contributors for KEGG orthologs associated with resistance. CONCLUSIONS: Overall, these results provide new information about environmental integrons as a source of resistance determinants outside clinical settings and the bacterial community in the Velhas River.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Microbiana/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Integrones/genética , Bacterias/clasificación , Brasil , Ecosistema , Variación Genética , ARN Ribosómico 16S/genética , Ríos/microbiología
2.
Ecol Evol ; 10(19): 10314-10324, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072261

RESUMEN

Fish stocking programs have been implemented to mitigate the blockage of original riverbeds by the construction of hydropower dams, which affects the natural migration of fish populations. However, this method raises concerns regarding the genetic rescue of the original populations of migratory fish species. We investigated the spatial distribution of genetic properties, such as genetic diversity, population structure, and gene flow (migration), of the Neotropical migratory fish Prochilodus costatus in the Três Marias dam in the São Francisco River basin, Brazil, and examined the possible effects of fish stocking programs on P. costatus populations in this region. In total, 1,017 specimens were sampled from 12 natural sites and a fish stocking program, and genotyped for high-throughput sequencing at 8 microsatellite loci. The populations presented low genetic variability, with evidence of inbreeding and the presence of only four genetic pools; three pools were observed throughout the study region, and the fourth was exclusive to one area in the Paraopeba River. Additionally, we identified high unidirectional gene flow between regions, and a preferred migratory route between the Pará River and the upper portion of the São Francisco River. The fish stocking program succeeded in transposing the genetic pools from downstream to upstream of the Três Marias dam, but, regrettably, promoted genetic homogenization in the upper São Francisco River basin. Moreover, the data show the fragility of this species at the genetic level. This monitoring strategy could be a model for the development of conservation and management measures for migratory fish populations that are consumed by humans.

3.
Front Genet ; 9: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593777

RESUMEN

Genetic diversity and population studies are essential for conservation and wildlife management programs. However, monitoring requires the analysis of multiple loci from many samples. These processes can be laborious and expensive. The choice of microsatellites and PCR calibration for genotyping are particularly daunting. Here we optimized a low-cost genotyping method using multiple microsatellite loci for simultaneous genotyping of up to 384 samples using next-generation sequencing (NGS). We designed primers with adapters to the combinatorial barcoding amplicon library and sequenced samples by MiSeq. Next, we adapted a bioinformatics pipeline for genotyping microsatellites based on read-length and sequence content. Using primer pairs for eight microsatellite loci from the fish Prochilodus costatus, we amplified, sequenced, and analyzed the DNA of 96, 288, or 384 individuals for allele detection. The most cost-effective methodology was a pseudo-multiplex reaction using a low-throughput kit of 1 M reads (Nano) for 384 DNA samples. We observed an average of 325 reads per individual per locus when genotyping eight loci. Assuming a minimum requirement of 10 reads per loci, two to four times more loci could be tested in each run, depending on the quality of the PCR reaction of each locus. In conclusion, we present a novel method for microsatellite genotyping using Illumina combinatorial barcoding that dispenses exhaustive PCR calibrations, since non-specific amplicons can be eliminated by bioinformatics analyses. This methodology rapidly provides genotyping data and is therefore a promising development for large-scale conservation-genetics studies.

4.
Open Microbiol J ; 8: 25-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24847390

RESUMEN

Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports.

5.
Braz. j. microbiol ; 44(3): 701-707, July-Sept. 2013. tab
Artículo en Inglés | LILACS | ID: lil-699802

RESUMEN

The aim of this work was to study the yeast populations and the main hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil. Forty-two water buffalo mozzarella samples were purchased from retail outlets in Belo Horizonte. In addition, five samples of consecutive starter cultures, curd before acidification, acidified curd and mozzarella were collected at an industry in the city of Oliveira. Only three of the five water samples analyzed were suitable for consumption according to Brazilian sanitary standards. Four milk samples were highly contaminated with fecal coliforms, and did not meet the minimal hygienic-sanitary standards according to Brazilian regulations. Only one sample of buffalo muzzarela purchased from retail outlets exceeded the limit for coagulase-positive Staphylococcus. Eleven samples showed counts of thermotolerant coliforms higher than5x 10³ CFU.g-1, but still lower than the maximum permitted by the Brazilian laws. Salmonella spp. and Listeria monocytogenes were not isolated. Debaryomyces hansenii, Candida lusitaniae and C. parapsilosis were the prevalent yeast species isolated from cheese. Among samples from the production stages, the acidified curd presented the highest numbers of yeasts, with C. catenulata being the most frequent species isolated. Some opportunistic yeast species such as C. guilliermondii, C. tropicalis, C. parapsilosis, C. lusitaniae, C. catenulata, C. rugosa and C. krusei occurred in the mozzarella cheese samples analyzed. The mozzarella cheese presented a low microbial load as compared to other cheese already studied, and the yeast biota included species typical of cheese and also opportunistic pathogens.


Asunto(s)
Animales , Bacterias/aislamiento & purificación , Productos Lácteos/microbiología , Levaduras/aislamiento & purificación , Carga Bacteriana , Brasil , Búfalos , Bacterias/clasificación , Recuento de Colonia Microbiana , Levaduras/clasificación
6.
Braz J Microbiol ; 44(3): 701-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24516436

RESUMEN

The aim of this work was to study the yeast populations and the main hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil. Forty-two water buffalo mozzarella samples were purchased from retail outlets in Belo Horizonte. In addition, five samples of consecutive starter cultures, curd before acidification, acidified curd and mozzarella were collected at an industry in the city of Oliveira. Only three of the five water samples analyzed were suitable for consumption according to Brazilian sanitary standards. Four milk samples were highly contaminated with fecal coliforms, and did not meet the minimal hygienic-sanitary standards according to Brazilian regulations. Only one sample of buffalo muzzarela purchased from retail outlets exceeded the limit for coagulase-positive Staphylococcus. Eleven samples showed counts of thermotolerant coliforms higher than 5 × 10(3) CFU.g(-1), but still lower than the maximum permitted by the Brazilian laws. Salmonella spp. and Listeria monocytogenes were not isolated. Debaryomyces hansenii, Candida lusitaniae and C. parapsilosis were the prevalent yeast species isolated from cheese. Among samples from the production stages, the acidified curd presented the highest numbers of yeasts, with C. catenulata being the most frequent species isolated. Some opportunistic yeast species such as C. guilliermondii, C. tropicalis, C. parapsilosis, C. lusitaniae, C. catenulata, C. rugosa and C. krusei occurred in the mozzarella cheese samples analyzed. The mozzarella cheese presented a low microbial load as compared to other cheese already studied, and the yeast biota included species typical of cheese and also opportunistic pathogens.


Asunto(s)
Bacterias/aislamiento & purificación , Productos Lácteos/microbiología , Levaduras/aislamiento & purificación , Animales , Bacterias/clasificación , Carga Bacteriana , Brasil , Búfalos , Recuento de Colonia Microbiana , Levaduras/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...