Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(30): 32651-32661, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100338

RESUMEN

Drought stress impacts soybean yields and physiological processes. However, the insertion of the activated form of the AtAREB1 gene in the soybean cultivar BR16, which is sensitive to water deficit, improved the drought response of the genetically modified plants. Thus, in this study, we used 1H NMR in solution and solid-state NMR to investigate the response of genetically modified soybean overexpressing AtAREB1 under water deficiency conditions. We achieved that drought-tolerant soybean yields high content of amino acids isoleucine, leucine, threonine, valine, proline, glutamate, aspartate, asparagine, tyrosine, and phenylalanine after 12 days of drought stress conditions, as compared to drought-sensitive soybean under the same conditions. Specific target compounds, including sugars, organic acids, and phenolic compounds, were identified as involved in controlling sensitive soybean during the vegetative stage. Solid-state NMR was used to study the impact of drought stress on starch and cellulose contents in different soybean genotypes. The findings provide insights into the metabolic adjustments of soybean overexpressing AREB transcription factors in adapting to dry climates. This study presents NMR techniques for investigating the metabolome of transgenic soybean plants in response to the water deficit. The approach allowed for the identification of physiological and morphological changes in drought-resistant and drought-tolerant soybean tissues. The findings indicate that drought stress significantly alters micro- and macromolecular metabolism in soybean plants. Differential responses were observed among roots and leaves as well as drought-tolerant and drought-sensitive cultivars, highlighting the complex interplay between overexpressed transcription factors and drought stress in soybean plants.

2.
Polymers (Basel) ; 16(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399907

RESUMEN

This study evaluates the activity of a recombinant chitinase from the leaf-cutting ant Atta sexdens (AsChtII-C4B1) against colloidal and solid α- and ß-chitin substrates. 1H NMR analyses of the reaction media showed the formation of N-acetylglucosamine (GlcNAc) as the hydrolysis product. Viscometry analyses revealed a reduction in the viscosity of chitin solutions, indicating that the enzyme decreases their molecular masses. Both solid state 13C NMR and XRD analyses showed minor differences in chitin crystallinity pre- and post-reaction, indicative of partial hydrolysis under the studied conditions, resulting in the formation of GlcNAc and a reduction in molecular mass. However, the enzyme was unable to completely degrade the chitin samples, as they retained most of their solid-state structure. It was also observed that the enzyme acts progressively and with a greater activity on α-chitin than on ß-chitin. AsChtII-C4B1 significantly changed the hyphae of the phytopathogenic fungus Lasiodiplodia theobromae, hindering its growth in both solid and liquid media and reducing its dry biomass by approximately 61%. The results demonstrate that AsChtII-C4B1 could be applied as an agent for the bioproduction of chitin derivatives and as a potential antifungal agent.

3.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234863

RESUMEN

Poly(p-anisidine) (PPA) is a polyaniline derivative presenting a methoxy (-OCH3) group at the para position of the phenyl ring. Considering the important role of conjugated polymers in novel technological applications, a systematic, combined experimental and theoretical investigation was performed to obtain more insight into the crystallization process of PPA. Conventional oxidative polymerization of p-anisidine monomer was based on a central composite rotational design (CCRD). The effects of the concentration of the monomer, ammonium persulfate (APS), and HCl on the percentage of crystallinity were considered. Several experimental techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), multifractal analysis, Nuclear Magnetic Resonance (13C NMR), Fourier-transform Infrared spectroscopy (FTIR), and complex impedance spectroscopy analysis, in addition to Density Functional Theory (DFT), were employed to perform a systematic investigation of PPA. The experimental treatments resulted in different crystal structures with a percentage of crystallinity ranging from (29.2 ± 0.6)% (PPA1HT) to (55.1 ± 0.2)% (PPA16HT-HH). A broad halo in the PPA16HT-HH pattern from 2θ = 10.0-30.0° suggested a reduced crystallinity. Needle and globular-particle morphologies were observed in both samples; the needle morphology might have been related to the crystalline contribution. A multifractal analysis showed that the PPA surface became more complex when the crystallinity was reduced. The proposed molecular structures of PPA were supported by the high-resolution 13C NMR results, allowing us to access the percentage of head-to-tail (HT) and head-to-head (HH) molecular structures. When comparing the calculated and experimental FTIR spectra, the most pronounced changes were observed in ν(C-H), ν(N-H), ν(C-O), and ν(C-N-C) due to the influence of counterions on the polymer backbone as well as the different mechanisms of polymerization. Finally, a significant difference in the electrical conductivity was observed in the range of 1.00 × 10-9 S.cm-1 and 3.90 × 10-14 S.cm-1, respectively, for PPA1HT and PPA16HT-HH.


Asunto(s)
Polímeros , Compuestos de Anilina , Cristalización/métodos , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Int J Biol Macromol ; 178: 558-568, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577816

RESUMEN

Two samples of N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan (DPCat) with different average degrees of quaternization named as DPCat35 (DQ¯ = 35%) and DPCat80 (DQ¯ = 80%), were successfully synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) with O-palmitoyl chitosan (DPCh) derivative (DS¯ = 12%). Such amphiphilic derivatives of chitosan were fully water-soluble at 1.0 < pH < 12.0 and showed significant electrostatic stability enhancement of a self-assembly micellar nanostructure (100-320 nm) due to its positively-charged out-layer. In vitro mucoadhesive and cytotoxicity essays toward healthy fibroblast cells (Balb/C 3T3 clone A31 cell), human prostate cancer (DU145) and liver cancer (HepG2/C3A) cell lines revealed that the biological properties of DPCat derivatives were strongly dependent on DQ¯. Additionally, DPCat35 had better interactions with the biological tissue and with mucin glycoproteins at pH 7.4 as well as exhibited potential to be used on the development of drug delivery systems for prostate and liver cancer treatment.


Asunto(s)
Quitosano , Sistemas de Liberación de Medicamentos , Compuestos Epoxi/química , Compuestos de Amonio Cuaternario/química , Animales , Células 3T3 BALB , Quitosano/síntesis química , Quitosano/química , Quitosano/farmacología , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Electricidad Estática
5.
World J Microbiol Biotechnol ; 35(8): 114, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332537

RESUMEN

N-acetyl-D-glucosamine (GlcNAc) is an important amino-monosaccharide with great potential for biotechnological applications. It has traditionally been produced by the chemical hydrolysis of chitin, despite certain industrial and environmental drawbacks, including acidic wastes, low yields and high costs. Therefore, enzymatic production has gained attention as a promising environmentally-friendly alternative to the chemical processes. In this study we demonstrate the GlcNAc bioproduction from colloidal α-chitin using an enzyme cocktail containing endochitinases and exochitinases (chitobiosidases and N-acetyl-glucosaminidases). The enzyme cocktail was extracted after fermentation in a bioreactor by Aeromonas caviae CHZ306, a chitinolytic marine bacterium with great potential for chitinase production. Hydrolysis parameters were studied in terms of temperature, pH, enzyme and substrate concentration, and reaction time, achieving over 90% GlcNAc yield within 6 h. The use of colloidal α-chitin as substrate showed a substantial improvement of GlcNAc yields, when compared with ß-chitin and α-chitin polymorphs. Such result is directly related to a significant decrease in crystallinity and viscosity from natural α-chitin, providing the chitinase with greater accessibility to the depolymerized chains. This study provides valuable information on the GlcNAc bioproduction from chitin using an enzymatic approach, addressing the key points for its production, including the enzyme cocktail composition and the substrate structures.


Asunto(s)
Acetilglucosamina/biosíntesis , Aeromonas caviae/enzimología , Quitina/metabolismo , Quitinasas/metabolismo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Peso Molecular , Temperatura , Viscosidad , Difracción de Rayos X
6.
Int J Biol Macromol ; 124: 828-837, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30502428

RESUMEN

Methoxypoly(ethyleneglycol)-graft-chitosan (PEG-g-Ch) was prepared by grafting polyethyleneglycol into chitosans (Ch) exhibiting different average degree of deacetylation (60% < DD¯â€¯< 95%). 1H NMR showed that PEG-g-Ch derivatives presented high average degree of N-substitution (DS¯â€¯≈ 40%) and such derivatives exhibited full water solubility at 1.0 < pH < 11.0. The mPEG-g-Ch derivatives displayed much lower intrinsic viscosity (20 mL g-1 < [η] < 110 mL g-1) as compared to the parent chitosans (440 mL g-1 < [η] < 1650 mL g-1) due to extensive exposition of PEG chains to the aqueous medium and compact coiling of the chitosan backbone. The presence of numerous PEG chains grafted into chitosan also determined the crystalline arrangement and the thermal stability of PEG-g-Ch derivatives. The rheological study showed that the concentrated aqueous solutions of PEG-g-Ch derivatives displayed pseudoplastic behavior regardless of the parent chitosans´ characteristics and no dependence of dynamic viscosity on the temperature. However, PChD2 (DD¯â€¯≈ 76%; [η] ≈ 1201 mL g-1) showed a distinct rheological behavior as it formed a physically cross-linked hydrogel that exhibited a thermo-induced sol-gel transition at ≈38 °C.


Asunto(s)
Quitosano/química , Hidrogeles/química , Polietilenglicoles/química , Agua/química , Concentración de Iones de Hidrógeno , Transición de Fase , Reología , Solubilidad , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA