Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(69): e202301005, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677125

RESUMEN

Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.

2.
Chem Sci ; 13(41): 12208-12218, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36349110

RESUMEN

It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.

3.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328526

RESUMEN

Imines or Schiff bases (SB) are formed by the condensation of an aldehyde or a ketone with a primary amine, with the removal of a water molecule. Schiff bases are central molecules in several biological processes for their ability to form and cleave by small variation of the medium. We report here the controlled hydrolysis of four SBs that may be applied in the fragrance industry, as they are profragrances all containing odorant molecules: methyl anthranilate as primary amine, and four aldehydes (cyclamal, helional, hydroxycitronellal and triplal) that are very volatile odorants. The SB stability was assessed over time by HPLC-MS in neutral or acidic conditions, both in solution and when trapped in low molecular weight gels. Our results demonstrate that it is possible to control the hydrolysis of the Schiff bases in the gel environment, thus tuning the quantity of aldehyde released and the persistency of the fragrance.


Asunto(s)
Perfumes , Bases de Schiff , Aldehídos , Aminas , Geles , Hidrólisis , Peso Molecular , Odorantes
4.
Gels ; 8(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35200480

RESUMEN

The three gelators presented in this work (Boc-D-Phe-L-Oxd-OH F0, Boc-D-F1Phe-L-Oxd-OH F1 and Boc-D-F2Phe-L-Oxd-OH F2) share the same scaffold and differ in the number of fluorine atoms linked to the aromatic ring of phenylalanine. They have been applied to the preparation of gels in 0.5% or 1.0% w/v concentration, using three methodologies: solvent switch, pH change and calcium ions addition. The general trend is an increased tendency to form structured materials from F0 to F1 and F2. This property ends up in the formation of stronger materials when fluorine atoms are present. Some samples, generally formed by F1 or F2 in 0.5% w/v concentration, show high transparency but low mechanical properties. Two gels, both containing fluorine atoms, show increased stiffness coupled with high transparency. The biocompatibility of the gelators was assessed exposing them to fibroblast cells and demonstrated that F1 and F2 are not toxic to cells even in high concentration, while F0 is not toxic to cells only in a low concentration. In conclusion, the presence of even only one fluorine atom improves all the gelators properties: the gelation ability of the compound, the rheological properties and the transparency of the final materials and the gelator biocompatibility.

5.
Gels ; 7(2)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918097

RESUMEN

Physical hydrogels are supramolecular materials obtained by self-assembly of small molecules called gelators. Aromatic amino acids and small peptides containing aromatic rings are good candidates as gelators due to their ability to form weak bonds as π-π interactions and hydrogen bonds between NH and CO of the peptide chain. In this paper we show our results in the preparation of a transparent hydrogel that was obtained by self-assembly of a fluorine-containing dipeptide that relies on the additional formation of halogen bonds due to the fluorine atoms contained in the dipeptide. We used Boc-D-F2Phe-L-Oxd-OH (F2Phe = 3,4-difluorophenylalainine; Oxd = 4-methyl-5-carboxy-oxazolidin-2-one) that formed a strong and transparent hydrogel in 0.5% w/w concentration at pH = 4.2. The formation of a hydrogel made of unnatural fluorinated amino acids may be of great interest in the evaluation of patients with parkinsonian syndromes and may be used for controlled release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...