Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38254755

RESUMEN

APC mutation is the main driving mechanism of CRC development and leads to constitutively activated WNT signaling, overpopulation of ALDH+ stem cells (SCs), and incomplete differentiation. We previously reported that retinoic acid (RA) receptors are selectively expressed in ALDH+ SCs, which provides a way to target cancer SCs with retinoids to induce differentiation. Hypotheses: A functional link exists between the WNT and RA pathways, and APC mutation generates a WNT:RA imbalance that decreases retinoid-induced differentiation and increases ALDH+ SCs. Accordingly, to restore parity in WNT:RA signaling, we induce wt-APC expression in APC-mutant CRC cells, and we assess the ability of all-trans retinoic acid (ATRA) to induce differentiation. We found that ATRA increased expression of the WNT target gene, CYP26A1, and inducing wt-APC reduced this expression by 50%. Thus, the RA and WNT pathways crosstalk to modulate CYP26A1, which metabolizes retinoids. Moreover, inducing wt-APC augments ATRA-induced cell differentiation by: (i) decreasing cell proliferation; (ii) suppressing ALDH1A1 expression; (iii) decreasing ALDH+ SCs; and (iv) increasing neuroendocrine cell differentiation. A novel CYP26A1-based network that links WNT and RA signaling was also identified by NanoString profiling/bioinformatics analysis. Furthermore, CYP26A1 inhibitors sensitized CRC cells to the anti-proliferative effect of drugs that downregulate WNT signaling. Notably, in wt-APC-CRCs, decreased CYP26A1 improved patient survival. These findings have strong potential for clinical translation.

2.
Cancer Biol Ther ; 24(1): 2195363, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37005380

RESUMEN

CD44 protein and its variant isoforms are expressed in cancer stem cells (CSCs), and various CD44 isoforms can have different functional roles in cells. Our goal was to investigate how different CD44 isoforms contribute to the emergence of stem cell (SC) overpopulation that drives colorectal cancer (CRC) development. Specific CD44 variant isoforms are selectively expressed in normal colonic SCs and become overexpressed in CRCs during tumor development. We created a unique panel of anti-CD44 rabbit genomic antibodies to 16 specific epitopes that span the entire length of the CD44 molecule. Our panel was used to comprehensively investigate the expression of different CD44 isoforms in matched pairs (n = 10) of malignant colonic tissue and adjacent normal mucosa, using two (IHC & IF) immunostaining approaches. We found that: i) CD44v8-10 is selectively expressed in the normal human colonic SC niche; ii) CD44v8-10 is co-expressed with the SC markers ALDH1 and LGR5 in normal and malignant colon tissues; iii) colon carcinoma tissues frequently (80%) stain for CD44v8-10 while staining for CD44v6 was less frequent (40%). Given that CD44v8-10 expression is restricted to cells in the normal human colonic SC niche and CD44v8-10 expression progressively increases during CRC development, CD44v8-10 expression likely contributes to the SC overpopulation that drives the development and growth of colon cancers. Since the CD44 variant v8-10 epitope is located on CD44's extracellular region, it offers great promise for targeted anti-CSC treatment approaches.


Asunto(s)
Carcinoma , Neoplasias del Colon , Nicho de Células Madre , Animales , Humanos , Carcinoma/genética , Carcinoma/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Nicho de Células Madre/genética
3.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798319

RESUMEN

One reason for lack of efficacy in cancer therapeutics is tumor heterogeneity. We hypothesize that tumor heterogeneity arises due to emergence of multiple cancer stem cell (CSC) subpopulations because miRNAs regulate expression of stem cell genes in CSCs. Our goal was to determine if: i) multiple CSC subpopulations exist in a human CRC cell population, and ii) miRNAs are differentially expressed in the different CSC subpopulations. We discovered that at least four different CSC populations (ALDH1, CD166, LGR5, LRIG1) exist in the HT29 cell line. CSC subpopulations were quantified using co-staining for multiple stem cell markers, isolated using FACS, and analyzed by NanoString miRNA profiling. The miRNA expression pattern in each CSC subpopulation was analyzed relative to miRNA expression patterns in other CSC subpopulations. Messenger RNAs predicted to be targeted by the upregulated miRNAs in each CSC subpopulation were: 1) identified using bioinformatics analyses, and 2) classified according to their predicted functions using David functional annotation analyses. We found multiple CSC subpopulations with a unique miRNA signature in each CSC subpopulation. Notably, the miRNAs expressed within one CSC subpopulation are predicted to target and downregulate the CSC genes and pathways that establish the other CSC subpopulations. Moreover, mRNAs predicted to be targeted by miRNAs in the different CSC subpopulations have different cellular functional classifications. That different CSC subpopulations express miRNAs that are predicted to target CSC genes expressed in other CSC subpopulations provides a mechanism that might explain the co-existence of multiple CSC subpopulations, tumor heterogeneity, and cancer therapy resistance.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38545373

RESUMEN

One reason for lack of efficacy in cancer therapeutics is tumor heterogeneity. We hypothesize that tumor heterogeneity arises due to emergence of multiple Cancer Stem Cell (CSC) subpopulations because miRNAs regulate expression of stem cell genes in CSCs. Our goal was to determine if: i) multiple CSC subpopulations exist in a human CRC cell population, and ii) miRNAs are differentially expressed in the different CSC subpopulations. We discovered that at least four different CSC populations (ALDH1, CD166, LGR5, and LRIG1) exist in the HT29 cell line. CSC subpopulations were quantified using co-staining for multiple stem cell markers, isolated using FACS, and analyzed by NanoString miRNA profiling. The miRNA expression pattern in each CSC subpopulation was analyzed relative to miRNA expression patterns in other CSC subpopulations. Messenger RNAs predicted to be targeted by the up-regulated miRNAs in each CSC subpopulation were: 1) identified using bioinformatics analyses, and 2) classified according to their predicted functions using David functional annotation analyses. We found multiple CSC subpopulations with a unique miRNA signature in each CSC subpopulation. Notably, the miRNAs expressed within one CSC subpopulation are predicted to target and down-regulate the CSC genes and pathways that establish the other CSC subpopulations. Moreover, mRNAs predicted to be targeted by miRNAs in the different CSC subpopulations have different cellular functional classifications. That different CSC subpopulations express miRNAs that are predicted to target CSC genes expressed in other CSC subpopulations provides a mechanism that might explain the co-existence of multiple CSC subpopulations, tumor heterogeneity, and cancer therapy resistance.

5.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35743243

RESUMEN

HOX proteins are transcription factors that regulate stem cell (SC) function, but their role in the SC origin of cancer is under-studied. Aberrant expression of HOX genes occurs in many cancer types. Our goal is to ascertain how retinoic acid (RA) signaling and the regulation of HOXA9 expression might play a role in the SC origin of human colorectal cancer (CRC). Previously, we reported that aldehyde dehydrogenase (ALDH) and other RA pathway components are co-expressed in colonic cancer SCs (CSCs) and that overpopulation of ALDH-positive CSCs occurs during colon tumorigenesis. Our hypothesis is RA signaling regulates HOXA9 expression, and dysregulated RA signaling results in HOXA9 overexpression, which contributes to CSC overpopulation in CRC. Immunostaining showed that HOXA9 was selectively expressed in ALDH-positive SCs, and HOXA9 expression was increased in CRCs compared to normal epithelium. Modulating RA signaling in CRC cells (HT29 and SW480) with ATRA and DEAB decreased cell proliferation and reduced HOXA9 expression. Bioinformatics analyses identified a network of proteins that functionally interact with HOXA9, and the genes that encode these proteins, as well as HOXA9, contain RA receptor binding sites. These findings indicate that the expression of HOXA9 and its functional network is regulated by RA signaling in normal colonic SCs, and, when dysregulated, HOXA9 may contribute to CSC overpopulation that drives CRC development and growth. Our study provides a regulatory mechanism that might be useful in developing treatments against CSC overpopulation in CRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Proteínas de Homeodominio/metabolismo , Aldehído Deshidrogenasa/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Neoplasias del Colon/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Densidad de Población , Células Madre/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
6.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299349

RESUMEN

Retinoic acid (RA) agents possess anti-tumor activity through their ability to induce cellular differentiation. However, retinoids have not yet been translated into effective systemic treatments for most solid tumors. RA signaling is mediated by the following two nuclear retinoic receptor subtypes: the retinoic acid receptor (RAR) and the retinoic X receptor (RXR), and their isoforms. The identification of mutations in retinoid receptors and other RA signaling pathway genes in human cancers offers opportunities for target discovery, drug design, and personalized medicine for distinct molecular retinoid subtypes. For example, chromosomal translocation involving RARA occurs in acute promyelocytic leukemia (APL), and all-trans retinoic acid (ATRA) is a highly effective and even curative therapeutic for APL patients. Thus, retinoid-based target discovery presents an important line of attack toward designing new, more effective strategies for treating other cancer types. Here, we review retinoid signaling, provide an update on retinoid agents and the current clinical research on retinoids in cancer, and discuss how the retinoid pathway genotype affects the ability of retinoid agents to inhibit the growth of colorectal cancer (CRC) cells. We also deliberate on why retinoid agents have not shown clinical efficacy against solid tumors and discuss alternative strategies that could overcome the lack of efficacy.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Retinoides/farmacología , Retinoides/uso terapéutico , Animales , Neoplasias Colorrectales/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo
7.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572600

RESUMEN

MicroRNAs (miRNAs or miRs) have a critical role in regulating stem cells (SCs) during development and altered expression can cause developmental defects and/or disease. Indeed, aberrant miRNA expression leads to wide-spread transcriptional dysregulation which has been linked to many cancers. Mounting evidence also indicates a role for miRNAs in the development of the cancer SC (CSC) phenotype. Our goal herein is to provide a review of: (i) current research on miRNAs and their targets in colorectal cancer (CRC), and (ii) miRNAs that are differentially expressed in colon CSCs. MicroRNAs can work in clusters or alone when targeting different SC genes to influence CSC phenotype. Accordingly, we discuss the specific miRNA cluster classifications and isomiRs that are predicted to target the ALDH1, CD166, BMI1, LRIG1, and LGR5 SC genes. miR-23b and miR-92A are of particular interest because our previously reported studies on miRNA expression in isolated normal versus malignant human colonic SCs showed that miR-23b and miR-92a are regulators of the LGR5 and LRIG1 SC genes, respectively. We also identify additional miRNAs whose expression inversely correlated with mRNA levels of their target genes and associated with CRC patient survival. Altogether, our deliberation on miRNAs, their clusters, and isomiRs in regulation of SC genes could provide insight into how dysregulation of miRNAs leads to the emergence of different CSC populations and SC overpopulation in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , MicroARNs/genética , Células Madre Neoplásicas/patología , Biomarcadores , Neoplasias Colorrectales/patología , Humanos
8.
Mol Cancer ; 13: 239, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25339305

RESUMEN

BACKGROUND: About 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to tolerate stress more efficiently than in sensitive cells. While the precise mechanism remains unclear, the UPR can trigger both pro-survival and pro-death outcomes that depend on the nature and magnitude of the stress. In this study, we identified MYC, an oncoprotein that is upregulated in endocrine resistant breast cancer, as a regulator of the UPR in glucose-deprived conditions. METHODS: ER+ human breast cancer cell lines (LCC1, LCC1, LY2 and LCC9) and rat mammary tumors were used to confirm upregulation of MYC in endocrine resistance. To evaluate functional relevance of proteins, siRNA-mediated inhibition or small molecule inhibitors were used. Cell density/number was evaluated with crystal violet assay; cell cycle and apoptosis were measured by flow cytometry. Relative quantification of glutamine metabolites were determined by mass spectrometry. Signaling molecules of the UPR, apoptosis or autophagy pathways were investigated by western blotting. RESULTS: Increased MYC function in resistant cells correlated with increased dependency on glutamine and glucose for survival. Inhibition of MYC reduced cell growth and uptake of both glucose and glutamine in resistant cells. Interestingly, in glucose-deprived conditions, glutamine induced apoptosis and necrosis, arrested autophagy, and triggered the unfolded protein response (UPR) though GRP78-IRE1α with two possible outcomes: (i) inhibition of cell growth by JNK activation in most cells and, (ii) promotion of cell growth by spliced XBP1 in the minority of cells. These disparate effects are regulated, at different signaling junctions, by MYC more robustly in resistant cells. CONCLUSIONS: Endocrine resistant cells overexpress MYC and are better adapted to withstand periods of glucose deprivation and can use glutamine in the short term to maintain adequate metabolism to support cell survival. Our findings reveal a unique role for MYC in regulating cell fate through the UPR, and suggest that targeting glutamine metabolism may be a novel strategy in endocrine resistant breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Estrógenos/farmacología , Glucosa/metabolismo , Glutamina/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Moduladores de los Receptores de Estrógeno/farmacología , Femenino , Humanos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Anticancer Res ; 34(4): 1637-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24692692

RESUMEN

BACKGROUND/AIM: The Jamaican "Guinea Hen Weed" (Petiveria alliacea L.) plant has been traditionally used in folklore medicine to treat a variety of diseases including cancer. In the present study we investigated on the therapeutic feasibility of dibenzyl trisulfide (DTS) (isolated from the Jamaican Guinea Hen Weed) as a potent small-molecule kinase inhibitor to treat cancer. MATERIALS AND METHODS: We investigated the inhibitory effects of DTS against a large panel of kinases using a well-established competitive binding assay. Cell proliferation data were obtained using the WST-1 colorimetric assay. RESULTS: DTS inhibited the activity of the C-terminal kinase domain of RSK1 (80% compared to control) with a Kd of 1.3 µM. Anti-proliferative effects of DTS were observed in small lung, pancreatic, breast, and prostate cancer cells with IC50 values ranging from 0.34-0.84 µM. CONCLUSION: We have identified DTS as a highly selective and isoform-specific RSK1 kinase inhibitor with broad cancer therapeutic potential.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bencilo/farmacología , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Sulfuros/farmacología , Antineoplásicos/química , Antineoplásicos/toxicidad , Compuestos de Bencilo/química , Compuestos de Bencilo/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/toxicidad , Sulfuros/química , Sulfuros/toxicidad
10.
Cancer Res ; 72(6): 1321-31, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22422988

RESUMEN

How breast cancer cells respond to the stress of endocrine therapies determines whether they will acquire a resistant phenotype or execute a cell-death pathway. After a survival signal is successfully executed, a cell must decide whether it should replicate. How these cell-fate decisions are regulated is unclear, but evidence suggests that the signals that determine these outcomes are highly integrated. Central to the final cell-fate decision is signaling from the unfolded protein response, which can be activated following the sensing of stress within the endoplasmic reticulum. The duration of the response to stress is partly mediated by the duration of inositol-requiring enzyme-1 activation following its release from heat shock protein A5. The resulting signals appear to use several B-cell lymphoma-2 family members to both suppress apoptosis and activate autophagy. Changes in metabolism induced by cellular stress are key components of this regulatory system, and further adaptation of the metabolome is affected in response to stress. Here we describe the unfolded protein response, autophagy, and apoptosis, and how the regulation of these processes is integrated. Central topologic features of the signaling network that integrate cell-fate regulation and decision execution are discussed.


Asunto(s)
Autofagia , Neoplasias de la Mama/metabolismo , Carcinoma/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Animales , Apoptosis , Femenino , Humanos , Ratones , Transducción de Señal , Microambiente Tumoral
11.
Horm Mol Biol Clin Investig ; 9(2): 127-41, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25436704

RESUMEN

Abstract Breast cancer is the most common cancer diagnosed in women and its global incidence is rising rapidly. Adjuvant hormonal therapy, with antiestrogens (AE) such as tamoxifen and fulvestrant, is highly effective in the treatment of estrogen receptor-positive (ER+) breast cancers and is largely responsible for the increase in survival rates seen in the past four decades. However, nearly 50% of women with ER+ cancer display de novo or acquired resistance to AE therapies. Potential molecular mechanisms driving the resistance phenotype are beginning to be elucidated, allowing further development of more effective therapeutic and preventive strategies to reduce the overall mortality due to breast cancer. Over 70% of breast cancer survivors surveyed report increasing their comsumption of fruits, vegetables, and natural product supplements upon diagnosis. These are rich sources of dietary polyphenols (PPs) that can interact with cell-signaling pathways involved in the development of AE resistance. However, research on mechanisms by which these agents may affect AE resistance and whether PP intake can significantly change breast cancer recurrence is limited. We summarize the available data on the effects of PPs on breast cancer recurrence and the interactions of these compounds with some of the signaling pathways hypothesized to drive cell death and survival involved in the development of AE resistance in breast cancer.

12.
Apoptosis ; 15(6): 639-52, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20405221

RESUMEN

During metamorphosis of Manduca sexta, involution of labial glands follows an autophagic pathway towards programmed cell death (PCD). We looked for evidence of both caspase dependent and independent pathways of PCD by assaying for caspases -1, -2, -3, and -6, proteasomal protease, and cathepsins B & L, using fluorogenic substrates and aldehyde and chloromethylketone inhibitors. The substrates FR-AMC and RR-AMC, preferentially degraded by cathepsins B and L, were the most rapidly degraded, increasing in rate as the gland involuted. Digestion of YVAD-AMC (preferential substrate for caspase-1) and DEVD-AMC (substrate for caspases-3 & -7) was barely detectable, less than 0.02% (on a per-unit-protein basis) of that seen in vertebrate embryos induced to undergo apoptosis. Cleavage of VDVAD-AFC (substrate for caspase -2) and VEID-AFC (substrate for caspase -6) was also assessed, but activity was negligible. Mitochondrial membrane permeabilization (MMP) and cytochrome c release were not detected. Exogenous caspase substrate, polyadenosyl ribose phosphorylase (PARP), is cleaved by labial gland extracts, but only at an acidic pH of 5.5-6.0, and into fragments different from those generated by caspases (confirmed by N-terminal sequencing). The cysteine protease inhibitor leupeptin inhibits PARP cleavage, but the caspase inhibitor DEVD-CHO does not. However, potential caspase-derived fragments of PARP are seen when cytochrome c and dATP are added to cytosolic extracts. Although apoptotic machinery is conserved and functional in this tissue, cell death occurs independently of caspases in metamorphosis. We also postulate that lysosomal proteases play the major proteolytic role similar to the caspase cascade seen in apoptosis.


Asunto(s)
Apoptosis , Autofagia , Manduca/crecimiento & desarrollo , Metamorfosis Biológica , Animales , Caspasas/metabolismo , Catepsinas/metabolismo , Proteasas de Cisteína/metabolismo , Proteínas de Insectos/metabolismo , Manduca/enzimología , Manduca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA