Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 280(18): 4439-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23789902

RESUMEN

NO synthase (NOS) enzymes convert L-arginine to NO in two sequential reactions whose rates (k(cat1) and k(cat2)) are both limited by the rate of ferric heme reduction (k(r)). An enzyme ferric heme-NO complex forms as an immediate product complex and then undergoes either dissociation (at a rate that we denote as k(d)) to release NO in a productive manner, or reduction (k(r)) to form a ferrous heme-NO complex that must react with O2 (at a rate that we denote as k(ox)) in a NO dioxygenase reaction that regenerates the ferric enzyme. The interplay of these five kinetic parameters (k(cat1), k(cat2), k(r), k(d) and k(ox)) determines NOS specific activity, O2 concentration response, and pulsatile versus steady-state NO generation. In the present study, we utilized stopped-flow spectroscopy and single catalytic turnover methods to characterize the individual temperature dependencies of the five kinetic parameters of rat neuronal NOS. We then incorporated the measured kinetic values into computer simulations of the neuronal NOS reaction using a global kinetic model to comprehensively model its temperature-dependent catalytic behaviours. The results obtained provide new mechanistic insights and also reveal that the different temperature dependencies of the five kinetic parameters significantly alter neuronal NOS catalytic behaviours and NO release efficiency as a function of temperature.


Asunto(s)
Arginina/química , Hemo/química , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico/química , Oxígeno/química , Animales , Arginina/metabolismo , Sitios de Unión , Biocatálisis , Simulación por Computador , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/metabolismo , Cinética , Modelos Químicos , NADP/química , NADP/metabolismo , Neuronas/enzimología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Unión Proteica , Ratas , Temperatura , Termodinámica
2.
Biochem J ; 450(3): 607-17, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23289611

RESUMEN

The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [Keq(A)] of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations.


Asunto(s)
Mononucleótido de Flavina/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Sitios de Unión/genética , Transporte de Electrón , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Movimiento/fisiología , Mutagénesis Sitio-Dirigida , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Unión Proteica/genética , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas/genética , Electricidad Estática
3.
J Biol Chem ; 287(36): 30105-16, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22722929

RESUMEN

In nitric-oxide synthases (NOSs), two flexible hinges connect the FMN domain to the rest of the enzyme and may guide its interactions with partner domains for electron transfer and catalysis. We investigated the role of the FMN-FAD/NADPH hinge in rat neuronal NOS (nNOS) by constructing mutants that either shortened or lengthened this hinge by 2, 4, and 6 residues. Shortening the hinge progressively inhibited electron flux through the calmodulin (CaM)-free and CaM-bound nNOS to cytochrome c, whereas hinge lengthening relieved repression of electron flux in CaM-free nNOS and had no impact or slowed electron flux through CaM-bound nNOS to cytochrome c. How hinge length influenced heme reduction depended on whether enzyme flavins were pre-reduced with NADPH prior to triggering heme reduction. Without pre-reduction, changing the hinge length was deleterious; with pre-reduction, the hinge shortening was deleterious, and hinge lengthening increased heme reduction rates beyond wild type. Flavin fluorescence and stopped-flow kinetic studies on CaM-bound enzymes suggested hinge lengthening slowed the domain-domain interaction needed for FMN reduction. All hinge length changes lowered NO synthesis activity and increased uncoupled NADPH consumption. We conclude that several aspects of catalysis are sensitive to FMN-FAD/NADPH hinge length and that the native hinge allows a best compromise among the FMN domain interactions and associated electron transfer events to maximize NO synthesis and minimize uncoupled NADPH consumption.


Asunto(s)
Calmodulina/química , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico/biosíntesis , Animales , Calmodulina/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Transporte de Electrón/fisiología , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Cinética , NADP/química , NADP/metabolismo , Óxido Nítrico/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oxidación-Reducción , Estructura Terciaria de Proteína , Ratas
4.
J Inorg Biochem ; 108: 203-15, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22173094

RESUMEN

NO synthase enzymes (NOS) support unique single-electron transitions of a bound H(4)B cofactor during catalysis. Previous studies showed that both the pterin structure and surrounding protein residues impact H(4)B redox function during catalysis. A conserved Arg residue (Arg375 in iNOS) forms hydrogen bonds with the H(4)B ring. In order to understand the role of this residue in modulating the function of H(4)B and overall NO synthesis of the enzyme, we generated and characterized three mutants R375D, R375K and R375N of the oxygenase domain of inducible NOS (iNOSoxy). The mutations affected the dimer stability of iNOSoxy and its binding affinity toward substrates and H(4)B to varying degrees. Optical spectra of the ferric, ferrous, ferrous dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to the wild-type. However, mutants displayed somewhat lower heme midpoint potentials and faster ferrous heme-NO complex reactivity with O(2). Unlike the wild-type protein, mutants could not oxidize NOHA to nitrite in a H(2)O(2)-driven reaction. Mutation could potentially change the ferrous dioxy decay rate, H(4)B radical formation rate, and the amount of the Arg hydroxylation during single turnover Arg hydroxylation reaction. All mutants were able to form heterodimers with the iNOS G450A full-length protein and displayed lower NO synthesis activities and uncoupled NADPH consumption. We conclude that the conserved residue Arg375 (1) regulates the tempo and extent of the electron transfer between H(4)B and ferrous dioxy species and (2) controls the reactivity of the heme-based oxidant formed after electron transfer from H(4)B during steady state NO synthesis and H(2)O(2)-driven NOHA oxidation. Thus, Arg375 modulates the redox function of H(4)B and is important in controlling the catalytic function of NOS enzymes.


Asunto(s)
Arginina/química , Biopterinas/análogos & derivados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Biopterinas/química , Biopterinas/genética , Biopterinas/metabolismo , Catálisis , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Óxido Nítrico Sintasa de Tipo II/genética , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína
5.
J Biol Chem ; 286(36): 31168-79, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21757724

RESUMEN

Autoimmune thyroid diseases (AITD) arise from complex interactions between genetic, epigenetic, and environmental factors. Whole genome linkage scans and association studies have established thyroglobulin (TG) as a major AITD susceptibility gene. However, the causative TG variants and the pathogenic mechanisms are unknown. Here, we describe a genetic/epigenetic mechanism by which a newly identified TG promoter single-nucleotide polymorphism (SNP) variant predisposes to AITD. Sequencing analyses followed by case control and family-based association studies identified an SNP (-1623A→G) that was associated with AITD in the Caucasian population (p = 0.006). We show that the nucleotide substitution introduced by SNP (-1623A/G) modified a binding site for interferon regulatory factor-1 (IRF-1), a major interferon-induced transcription factor. Using chromatin immunoprecipitation, we demonstrated that IRF-1 binds to the 5' TG promoter motif, and the transcription factor binding correlates with active chromatin structure and is marked by enrichment of mono-methylated Lys-4 residue of histone H3, a signature of active transcriptional enhancers. Using reporter mutations and siRNA approaches, we demonstrate that the disease-associated allele (G) conferred increased TG promoter activity through IRF-1 binding. Finally, treatment of thyroid cells with interferon α, a known trigger of AITD, increased TG promoter activity only when it interacted with the disease-associated variant through IRF-1 binding. These results reveal a new mechanism of interaction between environmental (IFNα) and genetic (TG) factors to trigger AITD.


Asunto(s)
Autoinmunidad/genética , Epigénesis Genética , Interferón-alfa/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Tiroglobulina/genética , Enfermedades de la Tiroides/genética , Sitios de Unión , Estudios de Casos y Controles , Línea Celular , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Enfermedades de la Tiroides/inmunología
6.
J Biol Chem ; 284(49): 34231-43, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19776016

RESUMEN

Previously, we have shown that statistical synergism between amino acid variants in thyroglobulin (Tg) and specific HLA-DR3 pocket sequence signatures conferred a high risk for autoimmune thyroid disease (AITD). Therefore, we hypothesized that this statistical synergism mirrors a biochemical interaction between Tg peptides and HLA-DR3, which is key to the pathoetiology of AITD. To test this hypothesis, we designed a recombinant HLA-DR3 expression system that was used to express HLA-DR molecules harboring either AITD susceptibility or resistance DR pocket sequences. Next, we biochemically generated the potential Tg peptidic repertoire available to HLA-DR3 by separately treating 20 purified human thyroglobulin samples with cathepsins B, D, or L, lysosomal proteases that are involved in antigen processing and thyroid biology. Sequences of the cathepsin-generated peptides were then determined by matrix-assisted laser desorption ionization time-of-flight-mass spectroscopy, and algorithmic means were employed to identify putative AITD-susceptible HLA-DR3 binders. From four predicted peptides, we identified two novel peptides that bound strongly and specifically to both recombinant AITD-susceptible HLA-DR3 protein and HLA-DR3 molecules expressed on stably transfected cells. Intriguingly, the HLA-DR3-binding peptides we identified had a marked preference for the AITD-susceptibility DR signatures and not to those signatures that were AITD-protective. Structural analyses demonstrated the profound influence that the pocket signatures have on the interaction of HLA-DR molecules with Tg peptides. Our study suggests that interactions between Tg and discrete HLA-DR pocket signatures contribute to the initiation of AITD.


Asunto(s)
Regulación de la Expresión Génica , Antígeno HLA-DR3/metabolismo , Proteínas Recombinantes/química , Algoritmos , Animales , Enfermedades Autoinmunes , Catepsinas/química , Línea Celular , Células HeLa , Antígenos de Histocompatibilidad Clase II , Humanos , Péptidos/química , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tiroglobulina/química , Enfermedades de la Tiroides/inmunología , Glándula Tiroides/metabolismo
7.
J Biol Chem ; 284(29): 19237-47, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19473991

RESUMEN

Nitric-oxide synthases (NOSs) are calmodulin-dependent flavoheme enzymes that oxidize l-Arg to nitric oxide (NO) and l-citrulline. Their catalytic behaviors are complex and are determined by their rates of heme reduction (k(r)), ferric heme-NO dissociation (k(d)), and ferrous heme-NO oxidation (k(ox)). We found that point mutation (E762N) of a conserved residue on the enzyme's FMN subdomain caused the NO synthesis activity to double compared with wild type nNOS. However, in the absence of l-Arg, NADPH oxidation rates suggested that electron flux through the heme was slower in E762N nNOS, and this correlated with the mutant having a 60% slower k(r). During NO synthesis, little heme-NO complex accumulated in the mutant, compared with approximately 50-70% of the wild-type nNOS accumulating as this complex. This suggested that the E762N nNOS is hyperactive because it minimizes buildup of an inactive ferrous heme-NO complex during NO synthesis. Indeed, we found that k(ox) was 2 times faster in the E762N mutant than in wild-type nNOS. The mutational effect on k(ox) was independent of calmodulin. Computer simulation and experimental measures both indicated that the slower k(r) and faster k(ox) of E762N nNOS combine to lower its apparent K(m,O(2)) for NO synthesis by at least 5-fold, which in turn increases its V/K(m) value and enables it to be hyperactive in steady-state NO synthesis. Our work underscores how sensitive nNOS activity is to changes in the k(ox) and reveals a novel means for the FMN module or protein-protein interactions to alter nNOS activity.


Asunto(s)
Hemo/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Sitios de Unión/genética , Calmodulina/metabolismo , Catálisis , Compuestos Ferrosos/metabolismo , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Cinética , Proteínas Mutantes/metabolismo , NADP/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/genética , Oxidación-Reducción , Mutación Puntual , Temperatura , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 104(22): 9254-9, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17517617

RESUMEN

In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Secuencia de Aminoácidos , Animales , Reductasas del Citocromo/metabolismo , Flavinas/metabolismo , Hemo/metabolismo , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Óxido Nítrico Sintasa de Tipo III/genética , Oxidación-Reducción , Oxígeno/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA