Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Earth Environ ; 3(1): 271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407846

RESUMEN

Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in marine ecosystems is variable through space and time, with no clear consensus on the controls on variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. We find latitudinal variability in C:N:P stoichiometry, with surface temperature and macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic observations indicated community nutrient stress and suggested that nutrient supply rate and nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest systematic regulation of elemental stoichiometry among ocean ecosystems, but that future changes remain highly uncertain.

2.
Sci Data ; 9(1): 688, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369310

RESUMEN

Concentrations and elemental stoichiometry of suspended particulate organic carbon, nitrogen, phosphorus, and oxygen demand for respiration (C:N:P:-O2) play a vital role in characterizing and quantifying marine elemental cycles. Here, we present Version 2 of the Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for Respiration, and Nitrogen (GO-POPCORN) dataset. Version 1 is a previously published dataset of particulate organic matter from 70 different studies between 1971 and 2010, while Version 2 is comprised of data collected from recent cruises between 2011 and 2020. The combined GO-POPCORN dataset contains 2673 paired surface POC/N/P measurements from 70°S to 73°N across all major ocean basins at high spatial resolution. Version 2 also includes 965 measurements of oxygen demand for organic carbon respiration. This new dataset can help validate and calibrate the next generation of global ocean biogeochemical models with flexible elemental stoichiometry. We expect that incorporating variable C:N:P:-O2 into models will help improve our estimates of key ocean biogeochemical fluxes such as carbon export, nitrogen fixation, and organic matter remineralization.

3.
PLoS One ; 15(9): e0238405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32936809

RESUMEN

In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations.


Asunto(s)
El Niño Oscilación del Sur , Prochlorococcus/aislamiento & purificación , Agua de Mar/microbiología , Synechococcus/aislamiento & purificación , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/aislamiento & purificación , Biodiversidad , California , Cambio Climático , Ecosistema , Ecotipo , Genes Bacterianos , Microbiota/genética , Océano Pacífico , Filogenia , Prochlorococcus/genética , Prochlorococcus/crecimiento & desarrollo , Estaciones del Año , Synechococcus/genética , Synechococcus/crecimiento & desarrollo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...