Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hamostaseologie ; 41(2): 128-135, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33711849

RESUMEN

Aside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


Asunto(s)
Recuento de Plaquetas/métodos , Transfusión de Plaquetas/efectos adversos , Humanos
2.
J Proteomics ; 218: 103717, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32088354

RESUMEN

Platelet components (PCs) are occasionally associated with adverse transfusion reactions (ATRs). ATRs can occur regardless of the type of PC being transfused, whether it is a single-donor apheresis PC (SDA-PC) or a pooled PC (PPCs). The purpose of this study was to investigate the proteins and dysregulated pathways in both of the main types of PCs. The proteomic profiles of platelet pellets from SDA-PCs and PPCs involved in ATRs were analysed using the label-free LC-MS/MS method. Differentially expressed proteins with fold changes >|1.5| in clinical cases versus controls were characterised using bioinformatic tools (RStudio, GeneCodis3, and Ingenuity Pathways Analysis (IPA). The proteins were confirmed by western blotting. The common primary proteins found to be dysregulated in both types of PCs were the mitochondrial carnitine/acylcarnitine carrier protein (SLC25A20), multimerin-1 (MMRN1), and calumenin (CALU), which are associated with the important enrichment of platelet activation, platelet degranulation, and mitochondrial activity. Furthermore, this analysis revealed the involvement of commonly dysregulated canonical pathways, particularly mitochondrial dysfunction, platelet activation, and acute phase response. This proteomic analysis provided an interesting contribution to our understanding of the meticulous physiopathology of PCs associated with ATR. A larger investigation would assist in delineating the most relevant proteins to target within preventive transfusion safety strategies. BIOLOGICAL SIGNIFICANCE: Within platelet transfusion strategies, the two primary types of PCs predominantly processed in Europe, include (i) single donor apheresis PCs (SDA-PCs) from one donor and (ii) pooled PCs (PPCs). The current study used PCs from five buffy coats derived from five whole blood donations that were identical in ABO, RH1 and KEL1 groups. Both PC types were shown to be associated with the onset of an ATR in the transfused patient. Several common platelet proteins were found to be dysregulated in bags associated with ATR occurrences regardless of the type of PCs transfused and of their process. The dysregulated proteins included mitochondrial carnitine/acylcarnitine carrier protein (SLC25A20), which is involved in a fatty acid oxidation disorder; calumenin (CALU); and multimerin-1 (MMRN1), which is chiefly involved in platelet activation and degranulation. Dysregulated platelet protein pathways for ATRs that occurred with SDA-PCs and PPCs could support the dysregulated functions found in association with those three proteins. Those common platelet proteins may become candidates to define biomarkers associated with the onset of an ATR from PC transfusions, including monitoring during the quality steps of PC manufacturing, provided that the results are confirmed in larger cohorts. This study enriches our knowledge of platelet proteomics in PCs under pathological conditions.


Asunto(s)
Proteómica , Reacción a la Transfusión , Plaquetas , Cromatografía Liquida , Europa (Continente) , Humanos , Transfusión de Plaquetas/efectos adversos , Espectrometría de Masas en Tándem
3.
Data Brief ; 25: 104013, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31297409

RESUMEN

The presented dataset was used for the study focused on the search for differentially expressed proteins in blood platelet components (PCs) associated with adverse transfusion reactions (ATRs). Pellets of ATR platelet components and their controls were subjected to high-throughput proteomics analysis using a Q Exactive high-resolution tandem mass spectrometer. The data reported here constitutes an extension of "Differential protein expression of blood platelet components associated with adverse transfusion reactions" article Aloui et al., 2018. The reported data herein have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD003510 for the pooled platelet components (PPCs) and PXD008886 for the apheresis platelet components (SDA-PCs) associated with ATRs.

4.
Transfusion ; 59(1): 16-20, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30291753

RESUMEN

BACKGROUND: Platelet storage lesions are structural and biochemical changes in platelet concentrates (PCs), and depend on variables in collection and processing, as well as secondary procedures and storage conditions; such lesions can be mitigated by the use of platelet additive solutions (PASs). STUDY DESIGN AND METHODS: This study investigated release of the inflammatory markers sCD40L and sCD62P by single-donor apheresis platelet concentrates (SDA-PCs) and buffy coat-derived pooled platelet concentrates (PPCs) before and after storage. SDA-PC and PPC samples (n = 9089) processed by various methods and stored for different durations were obtained following production in one regional setting, the French National Blood Service. Soluble factors were quantified in PC supernatants immediately after processing and at the time of delivery, using biological testing technology (Luminex). RESULTS: SDA-PCs appeared more activated than PPCs at the end of the production step (i.e., prior to storage); however, proinflammatory soluble factors exhibited greater increases in PPCs than in SDA-PCs during storage. In SDA-PCs, PAS-D (65%) led to reduced secretion of sCD62P, but favored secretion of sCD40L, compared with the alternative PAS-E. CONCLUSION: These data stress the importance of the production (processing) steps of PC manufacture and of storage. The extent to which they affect patient outcomes awaits further investigation in clinical studies.


Asunto(s)
Capa Leucocitaria de la Sangre/metabolismo , Ligando de CD40/metabolismo , Selectina-P/metabolismo , Plaquetoferesis/métodos , Capa Leucocitaria de la Sangre/citología , Conservación de la Sangre , Humanos , Inflamación/metabolismo
5.
J Proteomics ; 194: 25-36, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590131

RESUMEN

Platelets found within platelet components (PCs) intended for transfusion release inflammatory molecules. Despite the implementation of leukoreduction, some of these PCs are occasionally associated with adverse transfusion reactions (ATRs). The aim of this study was to decipher the platelet proteome in two types of PCs, buffy-coat-derived pooled PCs (PPCs) and single-donor apheresis PCs (SDA-PCs), associated with ATRs. A label-free LC-MS/MS method was used for the proteomic analysis of washed platelet pellets from 3 PPCs and 3 SDA-PCs associated with ATRs, compared to matched controls. Bioinformatics tools allowed us to characterise the differentially expressed (DE) proteins between cases (ATR-PCs) and controls (no.ATR-PCs). From the PPCs and SDA-PCs, 473 and 146 proteins were DE, respectively. The functional interpretation of these proteins revealed enrichment in platelet activation and degranulation as the most important biological process. The most dysregulated pathways were integrin signaling for PPCs and acute phase response signaling for SDA-PCs. Interestingly, inflammatory disorders were found to be enriched in both PC types. Profound proteome changes were found in the platelets of PCs that led to clinical ATRs in patients. This study presents the first exploration of the platelet proteomic signature associated with ATRs and could provide clues to improving transfusion medicine. BIOLOGICAL SIGNIFICANCE: Adverse transfusion reactions (ATRs) can still occur after transfusion of platelet components (PC). This is the first report on the proteomic analysis of PCs associated with ATR. In this study, the contents of PC bags implicated in ATRs were examined. The aims of this study were to characterise molecules that could be central to the inflammation of ATRs and to highlight dysregulated mechanisms to explain the onset of ATRs. Two types of PCs were used: 3 PPCs (each from 5 donors) and 3 SDA-PCs (each from one donor). We have shown that the two types of PCs, from bags undergoing different processing (i.e., sampling, preparation), involve two types of dysregulated - pathophysiological mechanisms associated with the onset of ATRs. The most dysregulated signaling pathways were cytoskeleton and integrin regulation for PPCs, acute phase response signaling and remodelling of adherens junctions for SDA-PCs. Inflammation, platelet activation and degranulation processes were present in both PC types but were more important for PPCs. This proteomics analysis provides a better understanding of the pathophysiological mechanisms involved in ATRs and may lead to novel steps to ensure safe PC transfusion.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria , Proteoma/metabolismo , Proteómica , Reacción a la Transfusión/sangre , Plaquetas/patología , Femenino , Humanos , Masculino , Reacción a la Transfusión/patología
6.
Blood Coagul Fibrinolysis ; 29(8): 689-696, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30325339

RESUMEN

: Glanzmann thrombasthenia is an inherited severe bleeding disease. Mutations associated with Glanzmann thrombasthenia are highly heterogeneous and occur across the two genes coding for the platelet αIIbß3 integrin. This study was aimed at identifying Glanzmann thrombasthenia-associated novel mutations in Tunisian patients. Seven unrelated Glanzmann thrombasthenia patients issued from high consanguineous families (86%; 6/7 of the patients) were studied. Glanzmann thrombasthenia diagnoses were based on patients' bleeding histories and platelet aggregation tests. Screening of ITGA2B and ITGB3 genes was performed by denaturing high-performance liquid chromatography (DHPLC) analysis. Amplicons with abnormal elution profiles were subjected to direct sequencing. DHPLC/sequencing analysis identified a pathogenic homozygous mutation in exon 26 at position c.2702C>A, inducing a substitution of a serine to a stop codon (p.S901*) in the ITGA2B gene, in three patients. This mutation was only previously reported in a Glanzmann thrombasthenia patient of a Tunisian origin and not in other populations. We diagnosed a pathogenic Glanzmann thrombasthenia mutation in ITGA2B screened by DHPLC that appears to be specific to individuals of Tunisian heritage and that deserves to be investigated in first intention. As a result, we determined that performing prenatal diagnosis and setting a prevention strategy via counselling for affected heterozygote individuals will be helpful for Tunisian Glanzmann thrombasthenia families where there is still a high rate of consanguinity.


Asunto(s)
Codón sin Sentido , Integrina alfa2/genética , Trombastenia/diagnóstico , Trombastenia/genética , Adulto , Niño , Cromatografía Líquida de Alta Presión , Consanguinidad , Femenino , Humanos , Integrina beta3/genética , Masculino , Técnicas de Diagnóstico Molecular , Pruebas de Función Plaquetaria , Análisis de Secuencia de ADN , Túnez
7.
Transfus Clin Biol ; 25(3): 192-196, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30033079

RESUMEN

Platelet transfusions may be associated with certain adverse effects in recipients, potentially caused by the presence of biological response modifiers contained in the platelet concentrates. The aim of this study is to identify the parameters that reflect platelet activation during both the preparation process and the storage of platelet concentrates. A total of 3,949apheresis platelet concentrate samples were studied with regard to parameters related to the donor as well as to the preparation process and their storage. Key glycoproteins characteristic of platelet activation, i.e. soluble CD40L and CD62P, were quantified in platelet concentrate supernatants on completion of their processing and during storage, using Luminex technology. We observed an increase in soluble factors over time. However, the different parameters studied in connection either with the donors or with the donations, such as (i) donor gender, (ii) donor blood group, (iii) time of collection and (iv) type of apheresis separator, do not seem to have any effect on platelet activation or the release of soluble CD40L and CD62P.


Asunto(s)
Plaquetas , Conservación de la Sangre , Ligando de CD40/análisis , Selectina-P/análisis , Activación Plaquetaria , Transfusión de Plaquetas , Plaquetoferesis , Donantes de Sangre , Plaquetas/metabolismo , Ligando de CD40/biosíntesis , Femenino , Humanos , Masculino , Selectina-P/biosíntesis , Factores de Tiempo
8.
Sci Rep ; 6: 24715, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27094978

RESUMEN

Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P = 0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 µg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings.


Asunto(s)
Plaquetas/metabolismo , Antígenos CD40/genética , Ligando de CD40/sangre , Ligando de CD40/genética , Haplotipos , Integrina alfa2/genética , Adolescente , Adulto , Alelos , Femenino , Frecuencia de los Genes , Humanos , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple , Adulto Joven
9.
Transfusion ; 56(2): 497-504, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26446055

RESUMEN

BACKGROUND: Biological response modifiers (BRMs), secreted by platelets (PLTs) during storage, play a role in adverse events (AEs) associated with transfusion. Moreover, mitochondrial DNA (mtDNA) levels in PLT components (PCs) are associated with AEs. In this study we explore whether there is a correlation between pathogenic BRMs and mtDNA levels and whether these markers can be considered predictors of transfusion pathology. STUDY DESIGN AND METHODS: We investigated a series of reported AEs after PC transfusion, combining clinical observations and mathematical modeling systems. RESULTS: mtDNA was consistently released during the first days of PC storage; however, mtDNA release was earlier in "pathogenic" than in nonpathogenic PCs. PC supernatants with high levels of mtDNA along with soluble CD40 ligand (sCD40L) were significantly associated with occurrences of AEs. The fact that mtDNA did not associate with the 14 BRMs tested suggests the role of mtDNA in PC transfusion-linked inflammation is independent of that of BRMs, known to be associated with AEs. We present evidence that PLTs generate distinct pathogenic secretion profiles of BRMs and mtDNA. The calculated area under the curve for mtDNA was significantly associated with AEs, although less stringently predictive than those of sCD40L or interleukin-13, standard predictors of AE. The established model predicts that distinct subtypes of AEs can be distinguished, dependent on mtDNA levels and PC storage length. CONCLUSIONS: Further work should be considered to test the propensity of mtDNA in PLT concentrates to generate inflammation and cause an AE.


Asunto(s)
Plaquetas/metabolismo , Conservación de la Sangre/efectos adversos , Ligando de CD40/metabolismo , ADN Mitocondrial/metabolismo , Interleucina-13/metabolismo , Transfusión de Plaquetas/efectos adversos , Femenino , Humanos , Masculino , Factores de Tiempo
10.
Sci Rep ; 4: 7239, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25430087

RESUMEN

The CD40 ligand (CD40L/CD154), a member of TNF superfamily, is notably expressed on activated CD4+ T-cells and stimulated platelets. CD40L is linked to a variety of pathologies and to acute transfusion reactions (ATR). Mutations in this gene (CD40LG) lead to X-linked hyper-IgM syndrome. Some CD40LG polymorphisms are associated with variable protein expression. The rationale behind this study is that CD40L protein has been observed to be involved in ATR. We wondered whether genetic polymorphisms are implicated. We investigated genetic diversity in the CD40LG using DHPLC and capillary electrophoresis for screening and genotyping (n = 485 French and Tunisian blood donors). We identified significant difference in the CD40LG linkage pattern between the two populations. Variant minor alleles were significantly over-represented in Tunisian donors (P<0.0001 to 0.0270). We found higher heterogeneity in the Tunisian, including three novel low frequency variants. As there was not a particular pattern of CD40LG in single apheresis donors whose platelet components induced an ATR, we discuss how this information may be useful for future disease association studies on CD40LG.


Asunto(s)
Ligando de CD40/genética , Factores Inmunológicos/genética , Polimorfismo de Nucleótido Simple/genética , Reacción a la Transfusión/genética , Adulto , Alelos , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...