Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(5): 1217-1233, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991267

RESUMEN

With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.


Asunto(s)
Inundaciones , Oxígeno , Oxígeno/metabolismo , Fitomejoramiento , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Desarrollo de la Planta
3.
Front Plant Sci ; 13: 978586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311083

RESUMEN

Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.

4.
J Exp Bot ; 71(20): 6379-6395, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32777074

RESUMEN

Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissue-cultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the Km value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.


Asunto(s)
Picea , Lignina , Noruega , Proteómica , Xilema
5.
Plant Physiol ; 181(4): 1552-1572, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31558578

RESUMEN

A comparative transcriptomic study and a single-cell metabolome analysis were combined to determine whether parenchymal ray cells contribute to the biosynthesis of monolignols in the lignifying xylem of Norway spruce (Picea abies). Ray parenchymal cells may function in the lignification of upright tracheids by supplying monolignols. To test this hypothesis, parenchymal ray cells and upright tracheids were dissected with laser-capture microdissection from tangential cryosections of developing xylem of spruce trees. The transcriptome analysis revealed that among the genes involved in processes typical for vascular tissues, genes encoding cell wall biogenesis-related enzymes were highly expressed in both developing tracheids and ray cells. Interestingly, most of the shikimate and monolignol biosynthesis pathway-related genes were equally expressed in both cell types. Nonetheless, 1,073 differentially expressed genes were detected between developing ray cells and tracheids, among which a set of genes expressed only in ray cells was identified. In situ single cell metabolomics of semi-intact plants by picoliter pressure probe-electrospray ionization-mass spectrometry detected monolignols and their glycoconjugates in both cell types, indicating that the biosynthetic route for monolignols is active in both upright tracheids and parenchymal ray cells. The data strongly support the hypothesis that in developing xylem, ray cells produce monolignols that contribute to lignification of tracheid cell walls.


Asunto(s)
Lignina/metabolismo , Picea/citología , Picea/metabolismo , Xilema/citología , Xilema/metabolismo , Vías Biosintéticas/genética , Pared Celular/metabolismo , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Metaboloma , Picea/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Xilema/anatomía & histología
7.
New Phytol ; 222(4): 1816-1831, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30724367

RESUMEN

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Asunto(s)
Betula/genética , Corteza de la Planta/química , Corteza de la Planta/genética , Tallos de la Planta/genética , Transcriptoma/genética , Betula/crecimiento & desarrollo , Vías Biosintéticas/genética , Cámbium/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Lípidos/química , Meristema/genética , Especificidad de Órganos , Especificidad de la Especie , Nicho de Células Madre , Triterpenos/metabolismo , Madera/genética
8.
Biotechnol Prog ; 34(1): 81-90, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960884

RESUMEN

The objective of this study was to evaluate the ability of one versatile peroxidase and the biocatalytically generated complex Mn(III)-malonate to polymerize coniferyl alcohol (CA) to obtain dehydrogenation polymers (DHPs) and to characterize how closely the structures of the formed DHPs resemble native lignin. Hydrogen peroxide was used as oxidant and Mn2+ as mediator. Based on the yields of the polymerized product, it was concluded that the enzymatic reaction should be performed in aqueous solution without organic solvents at 4.5 ≤ pH ≤ 6.0 and with 0.75 ≤ H2 O2 :CA ratio ≤ 1. The results obtained from the Mn3+ -malonate-mediated polymerization showed that the yield was almost 100%. Reaction conditions had, however, effect on the structures of the formed DHPs, as detected by size exclusion chromatography and pyrolysis-GC/MS. It can be concluded that from the structural point of view, the optimal pH for DHP formation using the presently studied system was 3 or 4.5. Low H2 O2 /CA ratio was beneficial to avoid oxidative side reactions. However, the high frequency of ß-ß linkages in all cases points to dimer formation between monomeric CA rather than endwise polymerization. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:81-90, 2018.


Asunto(s)
Manganeso/química , Fenoles/química , Solventes/química , Agua/química , Peroxidasa de Rábano Silvestre/química , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Lignina/química , Estructura Molecular , Oxidación-Reducción , Fenoles/síntesis química , Polimerizacion , Polímeros/química
9.
Methods Mol Biol ; 1696: 13-39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086394

RESUMEN

Gaining membrane vesicles from different plant species and tissue types is crucial for membrane studies. Membrane vesicles can be used for further purification of individual membrane types, and, for example, in studies of membrane enzyme activities, transport assays, and in proteomic analysis. Membrane isolation from some species, such as conifers, has proved to be more difficult than that of angiosperm species. In this paper, we describe steps for isolating cellular membranes from developing xylem, phloem, and lignin-forming tissue-cultured cells of Norway spruce, followed by partial enrichment of plasma membranes by aqueous polymer two-phase partitioning and purity analyses. The methods used are partially similar to the ones used for mono- and dicotyledonous plants, but some steps require discreet optimization, probably due to a high content of phenolic compounds present in the tissues and cultured cells of Norway spruce.


Asunto(s)
Fraccionamiento Celular/métodos , Membrana Celular , Picea/citología , Técnicas de Cultivo de Célula , Lignina/metabolismo , Floema/citología , Xilema/citología
10.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28481341

RESUMEN

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Asunto(s)
Betula/genética , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Adaptación Biológica/genética , Betula/fisiología , Finlandia , Duplicación de Gen , Genética de Población , Filogenia , Densidad de Población
12.
Plant Sci ; 247: 138-49, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27095407

RESUMEN

Previous reports have connected non-symbiotic and truncated hemoglobins (Hbs) to metabolism of nitric oxide (NO), an important signalling molecule involved in wood formation. We have studied the capability of poplar (Populus tremula × tremuloides) Hbs PttHb1 and PttTrHb proteins alone or with a flavin-protein reductase to relieve NO cytotoxicity in living cells. Complementation tests in a Hb-deficient, NO-sensitive yeast (Saccharomyces cerevisiae) Δyhb1 mutant showed that neither PttHb1 nor PttTrHb alone protected cells against NO. To study the ability of Hbs to interact with a reductase, ferredoxin NADP(+) oxidoreductase PtthFNR was characterized by sequencing and proteomics. To date, by far the greatest number of the known dual-targeted plant proteins are directed to chloroplasts and mitochondria. We discovered a novel variant of hFNR that lacks the plastid presequence and resides in cytosol. The coexpression of PttHb1 and PtthFNR partially restored NO resistance of the yeast Δyhb1 mutant, whereas PttTrHb coexpressed with PtthFNR failed to rescue growth. YFP fusion proteins confirmed the interaction between PttHb1 and PtthFNR in plant cells. The structural modelling results indicate that PttHb1 and PtthFNR are able to interact as NO dioxygenase. This is the first report on dual targeting of central plant enzyme FNR to plastids and cytosol.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , Hemoglobinas/metabolismo , Óxido Nítrico/farmacología , Populus/enzimología , Cloroplastos/metabolismo , Citosol/metabolismo , Ferredoxina-NADP Reductasa/genética , Genes Reporteros , Mitocondrias/metabolismo , Mutación , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteómica , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
13.
Front Plant Sci ; 7: 1965, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28101088

RESUMEN

Laser capture microdissection (LCM) enables precise dissection and collection of individual cell types from complex tissues. When applied to plant cells, and especially to woody tissues, LCM requires extensive optimization to overcome such factors as rigid cell walls, large central vacuoles, intercellular spaces, and technical issues with thickness and flatness of the sections. Here we present an optimized protocol for the laser-assisted microdissection of developing xylem from mature trees: a gymnosperm (Norway spruce, Picea abies) and an angiosperm (aspen, Populus tremula) tree. Different cell types of spruce and aspen wood (i.e., ray cells, tracheary elements, and fibers) were successfully microdissected from tangential, cross and radial cryosections of the current year's growth ring. Two approaches were applied to achieve satisfactory flatness and anatomical integrity of the spruce and aspen specimens. The commonly used membrane slides were ineffective as a mounting surface for the wood cryosections. Instead, in the present protocol we use glass slides, and introduce a glass slide sandwich assembly for the preparation of aspen sections. To ascertain that not only the anatomical integrity of the plant tissue, but also the molecular features were not compromised during the whole LCM procedure, good quality total RNA could be extracted from the microdissected cells. This showed the efficiency of the protocol and established that our methodology can be integrated in transcriptome analyses to elucidate cell-specific molecular events regulating wood formation in trees.

14.
Planta ; 242(3): 747-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26108783

RESUMEN

MAIN CONCLUSION: Externally added coniferyl alcohol at high concentrations reduces the growth of Nicotiana cells and seedlings. Coniferyl alcohol is metabolized by BY-2 cells to several compounds. Coniferyl alcohol (CA) is a common monolignol and a building block of lignin. The toxicity of monolignol alcohols has been stated in the literature, but there are only few studies suggesting that this is true. We investigated the physiological effects of CA on living plant cells in more detail. Tobacco (Nicotiana tabacum) Bright yellow-2 cells (BY-2) and Nicotiana benthamiana seedlings both showed concentration-dependent growth retardation in response to 0.5-5 mM CA treatment. In some cases, CA addition caused cell death in BY-2 cultures, but this response was dependent on the growth stage of the cells. Based on LC-MS/MS analysis, BY-2 cells did not accumulate the externally supplemented CA, but metabolized it to ferulic acid, ferulic acid glycoside, coniferin, and to some other phenolic compounds. In addition to growth inhibition, CA caused the formation of a lignin-like compound detected by phloroglucinol staining in N. benthamiana roots and occasionally in BY-2 cells. To prevent this, we added potassium iodide (KI, at 5 mM) to overcome the peroxidase-mediated CA polymerization to lignin. KI had, however, toxic effects on its own: in N. benthamiana seedlings, it caused reduction in growth; in BY-2 cells, reduction in growth and cell viability. Surprisingly, CA restored the growth of KI-treated BY-2 cells and N. benthamiana seedlings. Our results suggest that CA at high concentrations is toxic to plant cells.


Asunto(s)
Nicotiana/citología , Fenoles/farmacología , Plantones/efectos de los fármacos , Nicotiana/efectos de los fármacos
15.
Plants (Basel) ; 4(2): 183-95, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-27135322

RESUMEN

Quantitative and qualitative lignin analyses were carried out on material from the trunks of silver birch (Betula pendula Roth) trees. Two types of material were analyzed. First, whole birch trunk pieces were cryosectioned into cork cambium, non-conductive phloem, the cambial zone (conductive phloem, cambium and differentiating xylem), lignified xylem and the previous year's xylem; material that would show differences in lignin amount and quality. Second, clonal material from one natural birch population was analyzed to show variations between individuals and between the lignin analysis methods. The different tissues showed marked differences in lignin amount and the syringyl:guaiacyl (S/G) ratio. In the non-conductive phloem tissue containing sclereids, the S/G ratio was very low, and typical for phloem fibers and in the newly-formed xylem, as well as in the previous year's xylem, the ratio lay between five and seven, typical for broadleaf tree xylem. Clonal material consisting of 88 stems was used to calculate the S/G ratios from the thioacidolysis and CuO methods, which correlated positively with an R² value of 0.43. Comparisons of the methods indicate clearly that the CuO method is a good alternative to study the monomeric composition and S/G ratio of wood lignins.

16.
New Phytol ; 205(3): 1250-1263, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25307043

RESUMEN

Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific regulatory B'γ subunit of protein phosphatase 2A (PP2A) is required to control organellar ROS signalling and associated metabolic adjustments in Arabidopsis thaliana. Here, we addressed the mechanisms through which PP2A-B'γ impacts on organellar metabolic crosstalk and ROS homeostasis in leaves. Genetic, biochemical and pharmacological approaches, together with a combination of data-dependent acquisition (DDA) and selected reaction monitoring (SRM) MS techniques, were utilized to assess PP2A-B'γ-dependent adjustments in Arabidopsis thaliana. We show that PP2A-B'γ physically interacts with the cytoplasmic form of aconitase, a central metabolic enzyme functionally connected with mitochondrial respiration, oxidative stress responses and regulation of cell death in plants. Furthermore, PP2A-B'γ impacts ROS homeostasis by controlling the abundance of specific alternative oxidase isoforms, AOX1A and AOX1D, in leaf mitochondria. We conclude that PP2A-B'γ-dependent regulatory actions modulate the functional status of metabolic enzymes that essentially contribute to intracellular ROS signalling and metabolic homeostasis in plants.


Asunto(s)
Aconitato Hidratasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citoplasma/enzimología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Proteínas Mitocondriales/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas/antagonistas & inhibidores , Péptidos/química , Fosforilación/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos
17.
Physiol Plant ; 152(4): 599-616, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24730578

RESUMEN

There are no earlier reports with successful isolation of plasma membranes from lignin-forming tissues of conifers. A method to isolate cellular membranes from extracellular lignin-producing tissue-cultured cells and developing xylem of Norway spruce was optimized. Modifications to the homogenization buffer were needed to obtain membranes from these phenolics-rich tissues. Membranes were separated by aqueous polymer two-phase partitioning. Chlorophyll a determination, marker enzyme assays and western blot analyses using antibodies for each membrane type showed that mitochondrial, chloroplastic and to a certain extent also ER and Golgi membranes were efficiently diminished from the upper phase, but tonoplast and plasma membranes distributed evenly between the upper and lower phases. Redox enzymes present in the partially purified membrane fractions were assayed in order to reveal the origin of H(2)O(2) needed for lignification. The membranes of spruce contained enzymes able to generate superoxide in the presence of NAD(P)H. Besides members of the flavodoxin and flavodoxin-like family proteins, cytochrome b5, cytochrome P450 and several stress responsive proteins were identified by nitroblue tetrazolium staining of isoelectric focusing gels and by mass spectrometry. Naphthoquinones juglone and menadione increased superoxide production in activity-stained gels. Some juglone-activated enzymes were preferentially using NADH. With NADH, menadione activated only some of the enzymes that juglone did, whereas with NADPH the activation patterns were identical. Duroquinone, a benzoquinone, did not affect superoxide production. Superoxide dismutase, ascorbate peroxidase, catalase and an acidic class III peroxidase isoenzyme were detected in partially purified spruce membranes. The possible locations and functions of these enzymes are discussed.


Asunto(s)
Lignina/metabolismo , Picea/metabolismo , Proteínas de Plantas/metabolismo , Catalasa/metabolismo , Membrana Celular/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Peróxido de Hidrógeno/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Proteínas de Plantas/aislamiento & purificación , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Xilema/metabolismo
18.
Plant Methods ; 9(1): 11, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23566373

RESUMEN

BACKGROUND: The hydraulic conductivity of the stem is a major factor limiting the capability of trees to transport water from the soil to transpiring leaves. During drought conditions, the conducting capacity of xylem can be reduced by some conduits being filled with gas, i.e. embolized. In order to understand the dynamics of embolism formation and repair, considerable attention has been given to developing reliable and accurate methods for quantifying the phenomenon. In the past decade, non-destructive imaging of embolism formation in living plants has become possible. Magnetic resonance imaging has been used to visualize the distribution of water within the stem, but in most cases it is not possible to resolve individual cells. Recently, high-resolution synchrotron x-ray microtomography has been introduced as a tool to visualize the water contents of individual cells in vivo, providing unprecedented insight into the dynamics of embolism repair. We have investigated the potential of an x-ray tube -based microtomography setup to visualize and quantify xylem embolism and embolism repair in water-stressed young saplings and shoot tips of Silver and Curly birch (Betula pendula and B. pendula var. carelica). RESULTS: From the microtomography images, the water-filled versus gas-filled status of individual xylem conduits can be seen, and the proportion of stem cross-section that consists of embolized tissue can be calculated. Measuring the number of embolized vessels in the imaged area is a simple counting experiment. In the samples investigated, wood fibers were cavitated in a large proportion of the xylem cross-section shortly after watering of the plant was stopped, but the number of embolized vessels remained low several days into a drought period. Under conditions of low evaporative demand, also refilling of previously embolized conduits was observed. CONCLUSIONS: Desktop x-ray microtomography is shown to be an effective method for evaluating the water-filled versus embolized status of the stem xylem in a small living sapling. Due to its non-destructive nature, the risk of inducing embolisms during sampling is greatly reduced. Compared with synchrotron imaging beamlines, desktop microtomography offers easier accessibility, while maintaining sufficient resolution to visualize the water contents of individual cells.

19.
J Agric Food Chem ; 60(44): 10903-9, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23098092

RESUMEN

Flaxseed (Linum usitatissimum L.) fibers were modified by oxidoreductive and cellulolytic enzymes. The lignin amount and intrinsic plant peroxidase activity was evaluated by histochemical and spectrophotometric assays. Peroxidase activity was not found from bast fibers. The flaxseed fibers were further separated and treated with laccase to conjugate the model compounds, that is, the hydrophobic gallate molecules on fiber surfaces. Laccase was able to slowly oxidize fiber-conjugated phenolics, but no fundamental changes in fiber cell surface structure or notable coupling of the applied hydrophobic gallate molecules onto the fibers occurred, as revealed by Fourier transform infrared spectroscopy. The reactivity of the mature fibers was further investigated using cellulolytic enzymes. Cellobiohydrolase (CBH) and endoglucanase (EG)-rich enzyme preparations were applied to reach a hydrolysis degree of 1-6% (of the fiber dry matter) using a standard enzyme dosage. The CBH mixture altered the fiber surface morphology distinctly, and SEM images illustrated fibers in which the cellulose fibrils seemed to be loosened and partially hydrolyzed. In contrast, the effect of the EG-rich preparation without CBH activity was notable on the fiber surface, polishing the surfaces. The cellulolytic treatments were potentially interesting for specific enzymatic modifications of flax fiber surfaces, whereas the approach to use oxidoreductive enzyme treatments on mature linseed fibers offered little potential, obviously due to the low lignin content of the fibers.


Asunto(s)
Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Lino , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA