Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Cent Sci ; 8(6): 845-852, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35756385

RESUMEN

Mechanically diverse polymer gels are commonly integrated into biomedical devices, soft robots, and tissue engineering scaffolds to perform distinct yet coordinated functions in wet environments. Such multigel systems are prone to volume fluctuations and shape distortions due to differential swelling driven by osmotic solvent redistribution. Living systems evade these issues by varying proximal tissue stiffness at nearly equal water concentration. However, this feature is challenging to replicate with synthetic gels: any alteration of cross-link density affects both the gel's swellability and mechanical properties. In contrast to the conventional coupling of physical properties, we report a strategy to tune the gel modulus independent of swelling ratio by regulating network strand flexibility with brushlike polymers. Chemically identical gels were constructed with a broad elastic modulus range at a constant solvent fraction by utilizing multidimensional network architectures. The general design-by-architecture framework is universally applicable to both organogels and hydrogels and can be further adapted to different practical applications.

3.
Sci Adv ; 8(3): eabm2469, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061528

RESUMEN

Injectable hydrogels are desired in many biomedical applications due to their minimally invasive deployment to the body and their ability to introduce drugs. However, current injectables suffer from mechanical mismatch with tissue, fragility, water expulsion, and high viscosity. To address these issues, we design brush-like macromolecules that concurrently provide softness, firmness, strength, fluidity, and swellability. The synthesized linear-bottlebrush-linear (LBL) copolymers facilitate improved injectability as the compact conformation of bottlebrush blocks results in low solution viscosity, while the thermoresponsive linear blocks permit prompt gelation at 37°C. The resulting hydrogels mimic the deformation response of supersoft tissues such as adipose and brain while withstanding deformations of 700% and precluding water expulsion upon gelation. Given their low cytotoxicity and mild inflammation in vivo, the developed materials will have vital implications for reconstructive surgery, tissue engineering, and drug delivery applications.

4.
Nat Commun ; 12(1): 3961, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172721

RESUMEN

Current materials used in biomedical devices do not match tissue's mechanical properties and leach various chemicals into the body. These deficiencies pose significant health risks that are further exacerbated by invasive implantation procedures. Herein, we leverage the brush-like polymer architecture to design and administer minimally invasive injectable elastomers that cure in vivo into leachable-free implants with mechanical properties matching the surrounding tissue. This strategy allows tuning curing time from minutes to hours, which empowers a broad range of biomedical applications from rapid wound sealing to time-intensive reconstructive surgery. These injectable elastomers support in vitro cell proliferation, while also demonstrating in vivo implant integrity with a mild inflammatory response and minimal fibrotic encapsulation.


Asunto(s)
Materiales Biomiméticos/administración & dosificación , Elastómeros/administración & dosificación , Procedimientos de Cirugía Plástica/métodos , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Proliferación Celular/efectos de los fármacos , Elastómeros/química , Elastómeros/farmacología , Geles , Inyecciones , Ratones , Polímeros/administración & dosificación , Polímeros/química , Polímeros/farmacología , Ratas , Factores de Tiempo
5.
Cell Tissue Res ; 384(2): 403-421, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33433691

RESUMEN

Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/ß-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Células Madre Pluripotentes Inducidas/metabolismo , Osteogénesis/fisiología , Impresión Tridimensional/normas , Andamios del Tejido/normas , Tejido Adiposo/fisiopatología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Masculino , Ratas , Ratas Wistar
6.
Adv Mater ; 32(50): e2005314, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33176030

RESUMEN

The ability of living species to transition between rigid and flexible shapes represents one of their survival mechanisms, which has been adopted by various human technologies. Such transition is especially desired in medical devices as rigidity facilitates the implantation process, while flexibility and softness favor biocompatibility with surrounding tissue. Traditional thermoplastics cannot match soft tissue mechanics, while gels leach into the body and alter their properties over time. Here, a single-component system with an unprecedented drop of Young's modulus by up to six orders of magnitude from the GPa to kPa level at a controlled temperature within 28-43 °C is demonstrated. This approach is based on brush-like polymer networks with crystallizable side chains, e.g., poly(valerolactone), affording independent control of melting temperature and Young's modulus by concurrently altering side chain length and crosslink density. Softening down to the tissue level at the physiological temperature allows the design of tissue-adaptive implants that can be inserted as rigid devices followed by matching the surrounding tissue mechanics at body temperature. This transition also enables thermally triggered release of embedded drugs for anti-inflammatory treatment.


Asunto(s)
Materiales Inteligentes , Temperatura de Transición , Módulo de Elasticidad , Ensayo de Materiales
7.
Sci Rep ; 10(1): 11764, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678204

RESUMEN

Wound instability and poor functional vascularization in bone tissue engineering lead to lack of tissue integration and ultimate failure of engineered grafts. In order to harness the regenerative potential of growth factors and stimulate bone healing, present study aims to design multifunctional cell therapy microcarriers with the capability of sequential delivery of essential growth factors, bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). An on-chip double emulsion method was implemented to generate monodisperse VEGF encapsulated microcarriers. Bio-inspired poly(3,4-dihydroxyphenethylamine) (PDA) was then functionalized to the microcarriers surface for BMP-2 conjugation. The microcarriers were seeded with mesenchymal stem cells (MSCs) using a dynamic culture technique for cells expansion. Finally, the microcarriers were incorporated into an injectable alginate-RGD hydrogel laden with endothelial cells (ECs) for further analysis. The DNA and calcium content, as well as ALP activity of the construct were analyzed. The confocal fluorescent microscopy was employed to monitor the MSCs and tunneling structure of ECs. Eventually, the capability of developed microcarriers for bone tissue formation was examined in vivo. Microfluidic platform generated monodisperse VEGF-loaded PLGA microcarriers with size-dependent release patterns. Microcarriers generated with the on-chip technique showed more sustained VEGF release profiles compared to the conventional bulk mixing method. The PDA functionalization of microcarriers surface not only provided immobilization of BMP-2 with prolonged bioavailability, but also enhanced the attachment and proliferation of MSCs. Dynamic culturing of microcarriers showcased their great potential to boost MSCs population required for stem cell therapy of bone defects. ALP activity and calcium content analysis of MSCs-laden microcarriers loaded into injectable hydrogels revealed their capability of tunneling formation, vascular cell growth and osteogenic differentiation. The in vivo histology and real-time polymerase chain reaction analysis revealed that transplantation of MSC-laden microcarriers supports ectopic bone formation in the rat model. The presented approach to design bioactive microcarriers offer sustained sequential delivery of bone ECM chemical cues and offer an ideal stabilized 3D microenvironment for patient-specific cell therapy applications. The proposed methodology is readily expandable to integrate other cells and cytokines in a tuned spatiotemporal manner for personalized regenerative medicine.


Asunto(s)
Proteína Morfogenética Ósea 2/administración & dosificación , Regeneración Ósea , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Microfluídica , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Materiales Biocompatibles/química , Biopolímeros/química , Diferenciación Celular , Células Cultivadas , Matriz Extracelular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microfluídica/instrumentación , Microfluídica/métodos , Osteogénesis , Ratas , Ingeniería de Tejidos
8.
J Periodontol ; 91 Suppl 1: S68-S78, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32633810

RESUMEN

BACKGROUND: Infection and inflammation induce epigenetic changes that alter gene expression. In periodontal disease, inflammation, and microbial dysbiosis occur, which can lead to compromised barrier function of the gingival epithelia. Here, we tested the hypotheses that infection of cultured human gingival epithelial (HGEp) cells with Porphyromonas gingivalis disrupts barrier function by inducing epigenetic alterations and that these effects can be blocked by inhibitors of DNA methylation. METHODS: Primary HGEp cells were infected with P. gingivalis either in the presence or absence of the non-nucleoside DNA methyltransferase (DNMT) inhibitors RG108, (-) epigallocatechin-3-gallate (EGCG), or curcumin. Barrier function was assessed as transepithelial electrical resistance (TEER). DNA methylation and mRNA abundance were quantified for genes encoding components of three cell-cell junction complexes, CDH1, PKP2, and TJP1. Cell morphology and the abundance of cell-cell junction proteins were evaluated by confocal microscopy. RESULTS: Compared to non-infected cells, P. gingivalis infection decreased TEER (P < 0.0001) of HGEp cells; increased methylation of the CDH1, PKP2, and TJP1 (P < 0.0001); and reduced their expression (mRNA abundance) (P < 0.005). Pretreatment with DNMT inhibitors prevented these infection-induced changes in HGEp cells, as well as the altered morphology associated with infection. CONCLUSION: Pathogenic infection induced changes in DNA methylation and impaired the barrier function of cultured primary gingival epithelial cells, which suggests a mechanism for systemic consequences of periodontal disease. Inhibition of these events by non-nucleoside DNMT inhibitors represents a potential strategy to treat periodontal disease.


Asunto(s)
Metilación de ADN , Encía , Células Cultivadas , Células Epiteliales , Humanos , Porphyromonas gingivalis
9.
ACS Cent Sci ; 6(3): 413-419, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32232141

RESUMEN

Softness and firmness are seemingly incompatible traits that synergize to create the unique soft-yet-firm tactility of living tissues pursued in soft robotics, wearable electronics, and plastic surgery. This dichotomy is particularly pronounced in tissues such as fat that are known to be both ultrasoft and ultrafirm. However, synthetically replicating this mechanical response remains elusive since ubiquitously employed soft gels are unable to concurrently reproduce tissue firmness. We have addressed the tissue challenge through the self-assembly of linear-bottlebrush-linear (LBL) block copolymers into thermoplastic elastomers. This hybrid molecular architecture delivers a hierarchical network organization with a cascade of deformation mechanisms responsible for initially low moduli followed by intense strain-stiffening. By bridging the firmness gap between gels and tissues, we have replicated the mechanics of fat, fetal membrane, spinal cord, and brain tissues. These solvent-free, nonleachable, and tissue-mimetic elastomers also show enhanced biocompatibility as demonstrated by cell proliferation studies, all of which are vital for the safety and longevity of future biomedical devices.

10.
Mater Sci Eng C Mater Biol Appl ; 109: 110646, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228956

RESUMEN

Passive activation of endodontic irrigants provides improved canal disinfection, smear layer removal, and better subsequent sealing. Although evidence suggests that passive activating endodontic devices increase the effectiveness of irrigation, no study exists to quantitatively compare and validate vibrational characteristics and cavitation produced by different ultrasonic endodontic devices. The current study aims to compare the efficiency of various commercially available ultrasonic endodontic activating devices (i.e., EndoUltra™, EndoChuck, Irrisafe™, and PiezoFlow®). The passive endodontic activating devices were characterized in terms of tip displacement and cavitation performance using scanning laser vibrometry (SLV) and sonochemical analysis, respectively. The obtained results showed that activator tip displacements and speed correlate to established cavitation thresholds. The EndoUltra™ tip speed was measured to be 14.5 and 28.1 m/s at 45 and 91 kHz, respectively, which is greater than the threshold. The EndoUltra™ was found to be the only device that exceeds the cavitation thresholds (i.e. tip speed and displacement), as evident from laser vibrometry analysis, and subsequently yielded measurable cavitation quantified via sonochemical analysis. All other passive endodontic activation devices, despite ultrasonic oscillation, were unable to produce cavitation.


Asunto(s)
Cavidad Pulpar , Desinfección , Irrigantes del Conducto Radicular , Ondas Ultrasónicas , Vibración
11.
Tissue Cell ; 63: 101326, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32223953

RESUMEN

OBJECTIVES: We aim to develop a 3D-bilayer collagen (COL) membrane reinforced with nano beta-tricalcium-phosphate (nß-TCP) particles and to evaluate its bone regeneration in combination with leukocyte-platelet-rich fibrin (L-PRF) in vivo. BACKGROUND DATA: L-PRF has exhibited promising results as a cell carrier in bone regeneration in a number of clinical studies, however there are some studies that did not confirm the positive results of L-PRF application. METHODS: Mechanical & physiochemical characteristics of the COL/nß-TCP membrane (1/2 & 1/4) were tested. Proliferation and osteogenic differentiation of seeded cells on bilayer collagen/nß-TCP thick membrane was examined. Then, critical-sized calvarial defects in 8 white New Zealand rabbits were filled with either Col, Col/nß-TCP, Col/nß-TCP combined with L-PRF membrane, or left empty. New bone formation (NBF) was measured histomorphometrically 4 & 8 weeks postoperatively. RESULTS: Compressive modulus increases while porosity decreases with higher ß-TCP concentrations. Mechanical properties improve, with 89 % porosity (pore size ∼100 µm) in the bilayer-collagen/nß-TCP membrane. The bilayer design also enhances the proliferation and ALP activity. In vivo study shows no significant difference among test groups at 4 weeks, but Col/nß-TCP + L-PRF demonstrates more NBF compared to others (P < 0.05) after 8 weeks. CONCLUSION: The bilayer-collagen/nß-TCP thick membrane shows promising physiochemical in vitro results and significant NBF, as ¾ of the defect is filled with lamellar bone when combined with L-PRF membrane.


Asunto(s)
Enfermedades Óseas/terapia , Regeneración Ósea/genética , Colágeno/farmacología , Fibrina Rica en Plaquetas/metabolismo , Animales , Enfermedades Óseas/genética , Enfermedades Óseas/patología , Colágeno/química , Humanos , Leucocitos/metabolismo , Membranas/química , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fibrina Rica en Plaquetas/química , Conejos
12.
Int J Biol Macromol ; 148: 434-448, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953173

RESUMEN

Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporated with nanocrystalline ß-tricalcium phosphate (ß-TCP) particles were tailor made as scaffolds for bone tissue engineering. ß-TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of ß-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogels was investigated. It was found that the homogeneous distribution of ß-TCP nanoparticles through the hydrogel matrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRD measurements represented the formation of apatite layer on the surface of nanocomposite hydrogels after immersion in the SBF solution, which implies their bioactivity. Cell culture assays confirmed biocompatibility of the developed hybrid hydrogels in vitro. The obtained results converge to offer dextran/ß-TCP nanocomposite hydrogels as promising scaffolds for bone regeneration applications.


Asunto(s)
Materiales Biocompatibles/química , Fosfatos de Calcio/química , Dextranos/química , Nanocompuestos/química , Nanogeles/química , Andamios del Tejido/química , Técnicas de Química Sintética , Ensayo de Materiales , Fenómenos Mecánicos , Estructura Molecular , Nanocompuestos/ultraestructura , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
13.
Periodontol 2000 ; 82(1): 157-172, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850624

RESUMEN

Periodontitis is a chronic multifactorial inflammatory disease associated with microbial dysbiosis and characterized by progressive destruction of the periodontal tissues. Such chronic infectious inflammatory disease is recognized as a major public health problem worldwide with measurable impact in systemic health. It has become evident that the periodontal disease phenotypes are not only determined by the microbiome effect, but the extent of the tissue response is also driven by the host genome and epigenome patterns responding to various environmental exposures. More recently there is mounting evidence indicating that epigenetic reprogramming in response to combined intrinsic and environmental exposures, might be particularly relevant due its plasticity and potential application towards precision health. The complex epigenetic crosstalk is reflected in the prognosis and progress of periodontal diseases and may also lead to a favorable landscape for cancer development. This review discusses epigenomics modifications focusing on the role of DNA methylation and pathways linking microbial infection and inflammatory pathways, which are also associated with carcinogenesis. There is a more clear vision whereas 'omics' technologies applied to unveil relevant epigenetic factors could play a significant role in the treatment of periodontal disease in a personalized mode, evidencing that public health approach should coexist with precision individualized treatment.


Asunto(s)
Epigenómica , Enfermedades Periodontales , Carcinogénesis , Metilación de ADN , Epigénesis Genética , Humanos
14.
Dent Mater ; 36(2): e47-e58, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791734

RESUMEN

OBJECTIVES: The purpose of this review is to describe recent developments in pulp tissue engineering using scaffolds and/or stem cells. It is crucial to understand how this approach can revitalize damaged dentin-pulp tissue. Widespread scaffold materials, both natural and synthetic, and their fabrication methods, and stem-progenitor cells with the potential of pulp regeneration will be discussed. DATA AND SOURCES: A review of literature was conducted through online databases, including MEDLINE by using the PubMed search engine, Scopus, and the Cochrane Library. STUDY SELECTION: Studies were selected based on relevance, with a preference given to recent research, particularly from the past decade. CONCLUSIONS: The use of biomaterial scaffolds and stem cells can be safe and potent for the regeneration of pulp tissue and re-establishment of tooth vitality. Natural and synthetic polymers have distinct advantages and limitations and in vitro and in vivo testing have produced positive results for cell attachment, proliferation, and angiogenesis. The type of biomaterial used for scaffold fabrication also facilitates stem cell differentiation into odontoblasts and the resulting biochemistry of tissue repair for each polymer and cell type was discussed. Multiple methods of scaffold design exist for pulp tissue engineering, which demonstrates the variability in tissue engineering applications in endodontics. This review explains the potential of evidence-based tissue engineering strategies and outcomes in pulp regeneration.


Asunto(s)
Pulpa Dental , Ingeniería de Tejidos , Odontoblastos , Polímeros , Regeneración , Andamios del Tejido
15.
J Craniomaxillofac Surg ; 47(8): 1266-1273, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31337570

RESUMEN

BACKGROUND: Human amniotic membranes (HAMs), as a biological membrane with healing, osteogenic, and cell therapy potential, has been in the spotlight to enhance the outcomes of treating bone defects. Present study aims to clinically assess the potential of HAM loaded with buccal fat pad-derived stem cells (BFSCs) as an osteogenic coverage for onlay bone grafts to maxillomandibular bone defects. MATERIALS AND METHODS: Nine patients with jaw bone defects were enrolled in the present study. The patients were allocated to two study groups: Iliac crest bone graft with HAM coverage (n = 5), and Iliac bone grafts covered with HAM loaded with BFSCs (n = 4). Five months following the grafting and prior to implant placement, cone beam computed tomography was performed for radiomorphometric analysis. RESULTS: The mean increase in bone width was found to be significantly greater in the HAM + BFSCs group (4.42 ± 1.03 mm versus 3.07 ± 0.73 mm, p < 0.05). Further, the changes in vertical dimension were greater in the HAM + BFSCs group (4.66 ± 1.06 mm versus 4.14 ± 1.03 mm, p > 0.05). CONCLUSION: Combined use of HAM with mesenchymal stem cells may enhance bone regeneration specifically in the horizontal dimension. Moreover, this methodology reduces the amount of harvested autogenous bone and diminish secondary bone resorption.


Asunto(s)
Aumento de la Cresta Alveolar , Tejido Adiposo , Amnios , Regeneración Ósea , Trasplante Óseo , Humanos
16.
Dent Mater ; 35(7): 990-1006, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31027908

RESUMEN

OBJECTIVE: Design of bioactive scaffolds with osteogenic capacity is a central challenge in cell-based patient-specific bone tissue engineering. Efficient and spatially uniform seeding of (stem) cells onto such constructs is vital to attain functional tissues. Herein we developed heparin functionalized collagen gels supported by 3D printed bioceramic scaffolds, as bone extracellular matrix (ECM)-mimetic matrices. These matrices were designed to enhance cell seeding efficiency of mesenchymal stem cells (MSCs) as well as improve their osteogenic differentiation through immobilized bone morphogenic protein 2 (BMP2) to be used for personalized bone regeneration. METHODS: A 3D gel based on heparin-conjugated collagen matrix capable of immobilizing recombinant human bone morphogenic protein 2 (BMP2) was synthesized. Isolated dental pulp Mesenchymal stem cells (MSCs) were then encapsulated into the bone ECM microenvironment to efficiently and uniformly seed a bioactive ceramic-based scaffold fabricated using additive manufacturing technique. The designed 3D cell-laden constructs were comprehensively investigated trough in vitro assays and in vivo study. RESULTS: In-depth rheological characterizations of heparin-conjugated collagen gel revealed that elasticity of the matrix is significantly improved compared with freely incorporated heparin. Investigation of the MSCs laden collagen-heparin hydrogels revealed their capability to provide spatiotemporal bioavailability of BMP2 while suppressing the matrix contraction over time. The in vivo histology and real-time polymerase chain reaction (qPCR) analysis showed that the designed construct supported the osteogenic differentiation of MSCs and induced the ectopic bone formation in rat model. SIGNIFICANCE: The presented hybrid constructs combine bone ECM chemical cues with mechanical function providing an ideal 3D microenvironment for patient-specific bone tissue engineering and cell therapy applications. The implemented methodology in design of ECM-mimetic 3D matrix capable of immobilizing BMP2 to improve seeding efficiency of customized scaffolds can be exploited for other bioactive molecules.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Proteína Morfogenética Ósea 2 , Diferenciación Celular , Matriz Extracelular , Humanos , Impresión Tridimensional , Ratas , Ingeniería de Tejidos , Andamios del Tejido
17.
J Adv Prosthodont ; 10(6): 430-439, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30584472

RESUMEN

The treatment of craniofacial anomalies has been challenging as a result of technological shortcomings that could not provide a consistent protocol to perfectly restore patient-specific anatomy. In the past, wax-up and impression-based maneuvers were implemented to achieve this clinical end. However, with the advent of computer-aided design and computer-aided manufacturing (CAD/CAM) technology, a rapid and cost-effective workflow in prosthetic rehabilitation has taken the place of the outdated procedures. Because the use of implants is so profound in different facets of restorative dentistry, their placement for craniofacial prosthesis retention has also been widely popular and advantageous in a variety of clinical settings. This review aims to effectively describe the well-rounded and interdisciplinary practice of craniofacial prosthesis fabrication and retention by outlining fabrication, osseointegrated implant placement for prosthesis retention, a myriad of clinical examples in the craniofacial complex, and a glimpse of the future of bioengineering principles to restore bioactivity and physiology to the previously defected tissue.

18.
Sci Rep ; 8(1): 14889, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291271

RESUMEN

3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.

19.
Tissue Cell ; 52: 71-77, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29857831

RESUMEN

Recent advances in three-dimensional printing technology have led to a rapid expansion of its applications in tissue engineering. The present study was designed to develop and characterize an in vitro multi-layered human alveolar bone, based on a 3D printed scaffold, combined with tissue engineered oral mucosal model. The objective was to incorporate oral squamous cell carcinoma (OSCC) cell line spheroids to the 3D model at different anatomical levels to represent different stages of oral cancer. Histological evaluation of the 3D tissue model revealed a tri-layered structure consisting of distinct epithelial, connective tissue, and bone layers; replicating normal oral tissue architecture. The mucosal part showed a well-differentiated stratified oral squamous epithelium similar to that of the native tissue counterpart, as demonstrated by immunohistochemistry for cytokeratin 13 and 14. Histological assessment of the cancerous models demonstrated OSCC spheroids at three depths including supra-epithelial level, sub-epithelial level, and deep in the connective tissue-bone interface. The 3D tissue engineered composite model closely simulated the native oral hard and soft tissues and has the potential to be used as a valuable in vitro model for the investigation of bone invasion of oral cancer and for the evaluation of novel diagnostic or therapeutic approaches to manage OSCC in the future.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Modelos Anatómicos , Neoplasias de la Boca/patología , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Proceso Alveolar/patología , Humanos , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeza y Cuello , Andamios del Tejido , Células Tumorales Cultivadas
20.
Carbohydr Polym ; 190: 281-294, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29628249

RESUMEN

A series of nanocomposite scaffolds comprised of dextran (Dex) and sol-gel derived bioactive glass ceramic nanoparticles (nBGC: 0-16 (wt%)) were fabricated as bioactive scaffolds for bone tissue engineering. Scanning electron microscopy showed Dex/nBGC scaffolds were consisting of a porous 3D microstructure with an average pore size of 240 µm. Energy-dispersive x-ray spectroscopy illustrated nBGC nanoparticles were homogenously distributed within the Dex matrix at low nBGC content (2 wt%), while agglomeration was observed at higher nBGC contents. It was found that the osmotic pressure and nBGC agglomeration at higher nBGC contents leads to increased water uptake, then reduction of the compressive modulus. Bioactivity of Dex/nBGC scaffolds was validated through apatite formation after submersion in the simulated body fluid. Dex/nBGC composite scaffolds were found to show improved human osteoblasts (HOBs) proliferation and alkaline phosphatase (ALP) activity with increasing nBGC content up to 16 (wt%) over two weeks. Owing to favorable physicochemical and bioactivity properties, the Dex/nBGC composite hydrogels can be offered as promising bioactive scaffolds for bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles/química , Huesos/citología , Cerámica/química , Dextranos/química , Hidrogeles/química , Nanocompuestos/química , Ingeniería de Tejidos , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles/farmacología , Huesos/fisiología , Calcificación Fisiológica/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fenómenos Mecánicos , Temperatura , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...