Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Physiol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502538

RESUMEN

Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.

2.
Exp Physiol ; 109(3): 324-334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968859

RESUMEN

The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.


Asunto(s)
Buceo , Animales , Buceo/fisiología , Mamíferos/fisiología , Bradicardia/metabolismo , Frecuencia Cardíaca/fisiología , Respiración
3.
Conserv Physiol ; 11(1): coad048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425482

RESUMEN

Tissue and blood gas embolism (GE) associated with fisheries bycatch are likely a widespread, yet underestimated, cause of sea turtle mortality. Here, we evaluated risk factors associated with tissue and blood GE in loggerhead turtles caught incidentally by trawl and gillnet fisheries on the Valencian coastline of Spain. Of 413 turtles (303 caught by trawl, 110 by gillnet fisheries), 54% (n = 222) exhibited GE. For sea turtles caught in trawls, the probability and severity of GE increased with trawl depth and turtle body mass. In addition, trawl depth and the GE score together explained the probability of mortality (P[mortality]) following recompression therapy. Specifically, a turtle with a GE score of 3 caught in a trawl deployed at 110 m had a P[mortality] of ~50%. For turtles caught in gillnets, no risk variables were significantly correlated with either the P[GE] or GE score. However, gillnet depth or GE score, separately, explained P[mortality], and a turtle caught at 45 m or with a GE score between 3 and 4 had a P[mortality] of 50%. Differences in the fishery characteristics precluded direct comparison of GE risk and mortality between these gear types. Although P[mortality] is expected to be significantly higher in untreated turtles released at sea, our findings can improve estimates of sea turtle mortality associated with trawls and gillnets, and help guide associate conservation efforts.

4.
J Biomed Opt ; 28(7): 075001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37457628

RESUMEN

Significance: Using functional near-infrared spectroscopy (fNIRS) in bottlenose dolphins (Tursiops truncatus) could help to understand how echolocating animals perceive their environment and how they focus on specific auditory objects, such as fish, in noisy marine settings. Aim: To test the feasibility of near-infrared spectroscopy (NIRS) in medium-sized marine mammals, such as dolphins, we modeled the light propagation with computational tools to determine the wavelengths, optode locations, and separation distances that maximize sensitivity to brain tissue. Approach: Using frequency-domain NIRS, we measured the absorption and reduced scattering coefficient of dolphin sculp. We assigned muscle, bone, and brain optical properties from the literature and modeled light propagation in a spatially accurate and biologically relevant model of a dolphin head, using finite-element modeling. We assessed tissue sensitivities for a range of wavelengths (600 to 1700 nm), source-detector distances (50 to 120 mm), and animal sizes (juvenile model 25% smaller than adult). Results: We found that the wavelengths most suitable for imaging the brain fell into two ranges: 700 to 900 nm and 1100 to 1150 nm. The optimal location for brain sensing positioned the center point between source and detector 30 to 50 mm caudal of the blowhole and at an angle 45 deg to 90 deg lateral off the midsagittal plane. Brain tissue sensitivity comparable to human measurements appears achievable only for smaller animals, such as juvenile bottlenose dolphins or smaller species of cetaceans, such as porpoises, or with source-detector separations ≫100 mm in adult dolphins. Conclusions: Brain measurements in juvenile or subadult dolphins, or smaller dolphin species, may be possible using specialized fNIRS devices that support optode separations of >100 mm. We speculate that many measurement repetitions will be required to overcome hemodynamic signals originating predominantly from the muscle layer above the skull. NIRS measurements of muscle tissue are feasible today with source-detector separations of 50 mm, or even less.


Asunto(s)
Delfín Mular , Humanos , Animales , Adulto , Delfín Mular/fisiología , Espectroscopía Infrarroja Corta , Estudios de Factibilidad , Cabeza
5.
Physiol Rep ; 11(11): e15698, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37271741

RESUMEN

While basal metabolic rate (BMR) scales proportionally with body mass (Mb ), it remains unclear whether the relationship differs between mammals from aquatic and terrestrial habitats. We hypothesized that differences in BMR allometry would be reflected in similar differences in scaling of O2 delivery pathways through the cardiorespiratory system. We performed a comparative analysis of BMR across 63 mammalian species (20 aquatic, 43 terrestrial) with a Mb range from 10 kg to 5318 kg. Our results revealed elevated BMRs in small (>10 kg and <100 kg) aquatic mammals compared to small terrestrial mammals. The results demonstrated that minute ventilation, that is, tidal volume (VT )·breathing frequency (fR ), as well as cardiac output, that is, stroke volume·heart rate, do not differ between the two habitats. We found that the "aquatic breathing strategy", characterized by higher VT and lower fR resulting in a more effective gas exchange, and by elevated blood hemoglobin concentrations resulting in a higher volume of O2 for the same volume of blood, supported elevated metabolic requirements in aquatic mammals. The results from this study provide a possible explanation of how differences in gas exchange may serve energy demands in aquatic versus terrestrial mammals.


Asunto(s)
Metabolismo Basal , Mamíferos , Animales , Metabolismo Basal/fisiología , Mamíferos/metabolismo , Respiración , Volumen de Ventilación Pulmonar
6.
Conserv Physiol ; 10(1): coac055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35949259

RESUMEN

Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key' questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.

8.
J Exp Biol ; 225(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014667

RESUMEN

Estimates of the energetic costs of locomotion (COL) at different activity levels are necessary to answer fundamental eco-physiological questions and to understand the impacts of anthropogenic disturbance to marine mammals. We combined estimates of energetic costs derived from breath-by-breath respirometry with measurements of overall dynamic body acceleration (ODBA) from biologging tags to validate ODBA as a proxy for COL in trained common bottlenose dolphins (Tursiops truncatus). We measured resting metabolic rate (RMR); mean individual RMR was 0.71-1.42 times that of a similarly sized terrestrial mammal and agreed with past measurements that used breath-by-breath and flow-through respirometry. We also measured energy expenditure during submerged swim trials, at primarily moderate exercise levels. We subtracted RMR to obtain COL, and normalized COL by body size to incorporate individual swimming efficiencies. We found both mass-specific energy expenditure and mass-specific COL were linearly related with ODBA. Measurements of activity level and cost of transport (the energy required to move a given distance) improve understanding of the COL in marine mammals. The strength of the correlation between ODBA and COL varied among individuals, but the overall relationship can be used at a broad scale to estimate the energetic costs of disturbance and daily locomotion costs to build energy budgets, and investigate the costs of diving in free-ranging animals where bio-logging data are available. We propose that a similar approach could be applied to other cetacean species.


Asunto(s)
Delfín Mular , Buceo , Aceleración , Animales , Delfín Mular/fisiología , Buceo/fisiología , Metabolismo Energético , Natación/fisiología
9.
J Exp Biol ; 224(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34746957

RESUMEN

Walruses rely on sea-ice to efficiently forage and rest between diving bouts while maintaining proximity to prime foraging habitat. Recent declines in summer sea ice have resulted in walruses hauling out on land where they have to travel farther to access productive benthic habitat while potentially increasing energetic costs. Despite the need to better understand the impact of sea ice loss on energy expenditure, knowledge about metabolic demands of specific behaviours in walruses is scarce. In the present study, 3 adult female Pacific walruses (Odobenus rosmarus divergens) housed in professional care participated in flow-through respirometry trials to measure metabolic rates while floating inactive at the water surface during a minimum of 5 min, during a 180 s stationary dive, and while swimming ∼90 m horizontally underwater. Metabolic rates during stationary dives (3.82±0.56 l O2 min-1) were lower than those measured at the water surface (4.64±1.04 l O2 min-1), which did not differ from rates measured during subsurface swimming (4.91±0.77 l O2 min-1). Thus, neither stationary diving nor subsurface swimming resulted in metabolic rates above those exhibited by walruses at the water surface. These results suggest that walruses minimize their energetic investment during underwater behaviours as reported for other marine mammals. Although environmental factors experienced by free-ranging walruses (e.g. winds or currents) likely affect metabolic rates, our results provide important information for understanding how behavioural changes affect energetic costs and can be used to improve bioenergetics models aimed at predicting the metabolic consequences of climate change on walruses.


Asunto(s)
Buceo , Morsas , Animales , Cambio Climático , Femenino , Cubierta de Hielo , Natación
10.
Front Physiol ; 12: 678555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539425

RESUMEN

Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.

11.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200223, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34121456

RESUMEN

Plasticity in the cardiac function of a marine mammal facilitates rapid adjustments to the contrasting metabolic demands of breathing at the surface and diving during an extended apnea. By matching their heart rate (fH) to their immediate physiological needs, a marine mammal can improve its metabolic efficiency and maximize the proportion of time spent underwater. Respiratory sinus arrhythmia (RSA) is a known modulation of fH that is driven by respiration and has been suggested to increase cardiorespiratory efficiency. To investigate the presence of RSA in cetaceans and the relationship between fH, breathing rate (fR) and body mass (Mb), we measured simultaneous fH and fR in five cetacean species in human care. We found that a higher fR was associated with a higher mean instantaneous fH (ifH) and minimum ifH of the RSA. By contrast, fH scaled inversely with Mb such that larger animals had lower mean and minimum ifHs of the RSA. There was a significant allometric relationship between maximum ifH of the RSA and Mb, but not fR, which may indicate that this parameter is set by physical laws and not adjusted dynamically with physiological needs. RSA was significantly affected by fR and was greatly reduced with small increases in fR. Ultimately, these data show that surface fHs of cetaceans are complex and the fH patterns we observed are controlled by several factors. We suggest the importance of considering RSA when interpreting fH measurements and particularly how fR may drive fH changes that are important for efficient gas exchange. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Asunto(s)
Peso Corporal/fisiología , Cetáceos/fisiología , Frecuencia Cardíaca/fisiología , Frecuencia Respiratoria/fisiología , Animales , Animales de Zoológico/fisiología , Arritmia Sinusal Respiratoria/fisiología
13.
J Zoo Wildl Med ; 52(1): 49-56, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33827160

RESUMEN

Lung function (breath duration, respiratory flow [V̇], and tidal volume [VT]), and end-expiratory O2 were measured in 19 adult bottlenose dolphins (Tursiops spp.) while at rest in water or beached for up to 10 min. The results show that inspiratory VT, expiratory VT, or inspiratory V̇ did not differ on land or in water. The average expiratory V̇ for all dolphins on land decreased by 16%, and the expiratory and total breath durations increased by 5% and 4%, respectively, compared with in water. There were temporal changes observed during beaching, where expired and inspired VT and inspired V̇ decreased by 13%, 16%, and 9%, respectively, after 10 min on land. These data suggest that dolphins compensate for the effect of gravity by adjusting respiration to maintain alveolar ventilation and gas exchange, but during extended durations, the increased work of breathing may impede ventilation and gas exchange. Continuous monitoring of lung function and gas exchange may help prevent long-term damage during out-of-water medical procedures, optimize animal transport conditions, and improve survival during stranding events.


Asunto(s)
Delfín Mular/fisiología , Frecuencia Respiratoria , Volumen de Ventilación Pulmonar , Animales , Femenino , Masculino , Intercambio Gaseoso Pulmonar , Fenómenos Fisiológicos Respiratorios
14.
Animals (Basel) ; 11(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572177

RESUMEN

Compared with terrestrial mammals, marine mammals possess increased muscle myoglobin concentrations (Mb concentration, g Mb · 100g-1 muscle), enhancing their onboard oxygen (O2) stores and their aerobic dive limit. Although myoglobin is not homogeneously distributed, cetacean muscle O2 stores have been often determined by measuring Mb concentration from a single muscle sample (longissimus dorsi) and multiplying that value by the animal's locomotor muscle or total muscle mass. This study serves to determine the accuracy of previous cetacean muscle O2 stores calculations. For that, body muscles from three delphinid species: Delphinus delphis, Stenella coeruleoalba, and Stenella frontalis, were dissected and weighed. Mb concentration was calculated from six muscles/muscle groups (epaxial, hypaxial and rectus abdominis; mastohumeralis; sternohyoideus; and dorsal scalenus), each representative of different functional groups (locomotion powering swimming, pectoral fin movement, feeding and respiration, respectively). Results demonstrated that the Mb concentration was heterogeneously distributed, being significantly higher in locomotor muscles. Locomotor muscles were the major contributors to total muscle O2 stores (mean 92.8%) due to their high Mb concentration and large muscle masses. Compared to this method, previous studies assuming homogenous Mb concentration distribution likely underestimated total muscle O2 stores by 10% when only considering locomotor muscles and overestimated them by 13% when total muscle mass was considered.

15.
J Exp Biol ; 224(Pt 1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33188062

RESUMEN

In the present study, we examined lung function in healthy resting adult (born in 2003) Pacific walruses (Odobenus rosmarus divergens) by measuring respiratory flow ([Formula: see text]) using a custom-made pneumotachometer. Three female walruses (670-1025 kg) voluntarily participated in spirometry trials while spontaneously breathing on land (sitting and lying down in sternal recumbency) and floating in water. While sitting, two walruses performed active respiratory efforts, and one animal participated in lung compliance measurements. For spontaneous breaths, [Formula: see text] was lower when walruses were lying down (e.g. expiration: 7.1±1.2 l s-1) as compared with in water (9.9±1.4 l s-1), while tidal volume (VT, 11.5±4.6 l), breath duration (4.6±1.4 s) and respiratory frequency (7.6±2.2 breaths min-1) remained the same. The measured VT and specific dynamic lung compliance (0.32±0.07 cmH2O-1) for spontaneous breaths were higher than those estimated for similarly sized terrestrial mammals. VT increased with body mass (allometric mass-exponent=1.29) and ranged from 3% to 43% of the estimated total lung capacity (TLCest) for spontaneous breaths. When normalized for TLCest, the maximal expiratory [Formula: see text] ([Formula: see text]exp) was higher than that estimated in phocids, but lower than that reported in cetaceans and the California sea lion. [Formula: see text]exp was maintained over all lung volumes during spontaneous and active respiratory manoeuvres. We conclude that location (water or land) affects lung function in the walrus and should be considered when studying respiratory physiology in semi-aquatic marine mammals.


Asunto(s)
Morsas , Agua , Animales , Femenino , Pulmón , Respiración , Espirometría
16.
Front Physiol ; 12: 816701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111080

RESUMEN

Developments in wearable human medical and sports health trackers has offered new solutions to challenges encountered by eco-physiologists attempting to measure physiological attributes in freely moving animals. Near-infrared spectroscopy (NIRS) is one such solution that has potential as a powerful physio-logging tool to assess physiology in freely moving animals. NIRS is a non-invasive optics-based technology, that uses non-ionizing radiation to illuminate biological tissue and measures changes in oxygenated and deoxygenated hemoglobin concentrations inside tissues such as skin, muscle, and the brain. The overall footprint of the device is small enough to be deployed in wearable physio-logging devices. We show that changes in hemoglobin concentration can be recorded from bottlenose dolphins and gray seals with signal quality comparable to that achieved in human recordings. We further discuss functionality, benefits, and limitations of NIRS as a standard tool for animal care and wildlife tracking for the marine mammal research community.

17.
Evol Med Public Health ; 9(1): 420-430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35169481

RESUMEN

BACKGROUND AND OBJECTIVES: Ischemic events, such as ischemic heart disease and stroke, are the number one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen, from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular features of an increased tolerance for apnea, we examined changes in gene expression in breath-holding dolphins. METHODOLOGY: Here, we capitalized on the adaptations possesed by bottlenose dolphins (Tursiops truncatus) for diving as a comparative model of ischemic stress and hypoxia tolerance to identify molecular features associated with breath holding. Given that signals in the blood may influence physiological changes during diving, we used RNA-Seq and enzyme assays to examine time-dependent changes in gene expression in the blood of breath-holding dolphins. RESULTS: We observed time-dependent upregulation of the arachidonate 5-lipoxygenase (ALOX5) gene and increased lipoxygenase activity during breath holding. ALOX5 has been shown to be activated during hypoxia in rodent models, and its metabolites, leukotrienes, induce vasoconstriction. CONCLUSIONS AND IMPLICATIONS: The upregulation of ALOX5 mRNA occurred within the calculated aerobic dive limit of the species, suggesting that ALOX5 may play a role in the dolphin's physiological response to diving, particularly in a pro-inflammatory response to ischemia and in promoting vasoconstriction. These observations pinpoint a potential molecular mechanism by which dolphins, and perhaps other marine mammals, respond to the prolonged breath holds associated with diving.

18.
J Exp Biol ; 224(Pt 1)2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33257432

RESUMEN

Among the many factors that influence the cardiovascular adjustments of marine mammals is the act of respiration at the surface, which facilitates rapid gas exchange and tissue re-perfusion between dives. We measured heart rate (fH) in six adult male bottlenose dolphins (Tursiops truncatus) spontaneously breathing at the surface to quantify the relationship between respiration and fH, and compared this with fH during submerged breath-holds. We found that dolphins exhibit a pronounced respiratory sinus arrhythmia (RSA) during surface breathing, resulting in a rapid increase in fH after a breath followed by a gradual decrease over the following 15-20 s to a steady fH that is maintained until the following breath. RSA resulted in a maximum instantaneous fH (ifH) of 87.4±13.6 beats min-1 and a minimum ifH of 56.8±14.8 beats min-1, and the degree of RSA was positively correlated with the inter-breath interval (IBI). The minimum ifH during 2 min submerged breath-holds where dolphins exhibited submersion bradycardia (36.4±9.0 beats min-1) was lower than the minimum ifH observed during an average IBI; however, during IBIs longer than 30 s, the minimum ifH (38.7±10.6 beats min-1) was not significantly different from that during 2 min breath-holds. These results demonstrate that the fH patterns observed during submerged breath-holds are similar to those resulting from RSA during an extended IBI. Here, we highlight the importance of RSA in influencing fH variability and emphasize the need to understand its relationship to submersion bradycardia.


Asunto(s)
Delfín Mular , Arritmia Sinusal Respiratoria , Animales , Bradicardia/veterinaria , Inmersión , Masculino , Respiración
19.
Front Physiol ; 11: 604018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329056

RESUMEN

Previous reports suggested the existence of direct somatic motor control over heart rate (f H) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O2 storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O2 and CO2 can be exchanged with minimal exchange of N2. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N2 exchange. To investigate the conditioned response, we measured the f H-response before and during static breath-holds in three bottlenose dolphins (Tursiops truncatus) when shown a visual symbol to perform either a long (LONG) or short (SHORT) breath-hold, or during a spontaneous breath-hold without a symbol (NS). The average f H (if Hstart), and the rate of change in f H (dif H/dt) during the first 20 s of the breath-hold differed between breath-hold types. In addition, the minimum instantaneous f H (if Hmin), and the average instantaneous f H during the last 10 s (if Hend) also differed between breath-hold types. The dif H/dt was greater, and the if Hstart, if Hmin, and if Hend were lower during a LONG as compared with either a SHORT, or an NS breath-hold (P < 0.05). Even though the NS breath-hold dives were longer in duration as compared with SHORT breath-hold dives, the dif H/dt was greater and the if Hstart, if Hmin, and if Hend were lower during the latter (P < 0.05). In addition, when the dolphin determined the breath-hold duration (NS), the f H was more variable within and between individuals and trials, suggesting a conditioned capacity to adjust the f H-response. These results suggest that dolphins have the capacity to selectively alter the f H-response during diving and provide evidence for significant cardiovascular plasticity in dolphins.

20.
J Exp Biol ; 223(Pt 18)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967976

RESUMEN

We analysed 3680 dives from 23 satellite-linked tags deployed on Cuvier's beaked whales to assess the relationship between long duration dives and inter-deep dive intervals and to estimate aerobic dive limit (ADL). The median duration of presumed foraging dives was 59 min and 5% of dives exceeded 77.7 min. We found no relationship between the longest 5% of dive durations and the following inter-deep dive interval nor any relationship with the ventilation period immediately prior to or following a long dive. We suggest that Cuvier's beaked whales have low metabolic rates, high oxygen storage capacities and a high acid-buffering capacity to deal with the by-products of both aerobic and anaerobic metabolism, which enables them to extend dive durations and exploit their bathypelagic foraging habitats.


Asunto(s)
Buceo , Ecolocación , Animales , Ecosistema , Factores de Tiempo , Ballenas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...