Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1276: 341601, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37573095

RESUMEN

BACKGROUND: Electrical tomography is widely recognized for its high time resolution and low cost. However, the implementation of electrical tomographic solutions has been hindered by the high computational overhead associated, which causes delays in the analysis, and numerical instability, that results in unclear reconstructed images. Therefore, it has been mostly applied offline, for qualitative tasks and with some delay. Applications requiring fast response times and quantification have been hindered or ruled out. RESULTS: In this article, we propose a new process analytical technology soft sensor that maps directly electrical tomography signals to the relevant parameter to be monitored. The data acquisition and estimation steps occur almost instantaneously, and the final accuracy is very good (R2 = 0,994). SIGNIFICANCE AND NOVELTY: The proposed methodology opens up good prospects for real-time quantitative applications. It was successfully tested on a pilot piping installation where the target property is the interface height between two immiscible fluids.

2.
Toxics ; 11(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624163

RESUMEN

The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds. Thus, this work presents an updated review of the main advances in the use of metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these substances. A bibliometric analysis allowed to show the evolution of the importance of this research topic in the literature over the last decade. The results of the study also showed that hierarchical and heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials, currently stand out as the main materials for the synthesis of MON, with better photocatalysis performance in the degradation of dyes, pharmaceuticals and pesticides.

3.
Adv Healthc Mater ; 8(15): e1900234, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31273945

RESUMEN

Surface biopotentials collected from the human epidermis contain important information about human physiology, such as muscular, heart, and brain activities. However, commercially available wearable biomonitoring devices are generally composed of rigid hardware incompatible with the mechanical compliance of soft human tissues. Thin-film stretchable e-skin circuits that can interface the human skin represent an excellent alternative for long-term wearable biomonitoring. Here, a series of soft and stretchable electrodes are evaluated for their applicability in biopotential sensing. This includes conductive composites made of polydimethylsiloxane (PDMS) as a base substrate and conductive particles, i.e., carbon (cPDMS), silver (AgPDMS), anisotropic z-axis conductors made with silver-coated nickel particles (zPDMS), as well as a combination of a conductive tough hydrogel with PDMS, and finally ultrathin tattoo-like adhesive poly(vinyl alcohol)-coated films with stretchable biphasic Ag-EGaIn electrodes. These electrodes are compared between themselves and against the gold-standard Ag/AgCl and stainless steel electrodes, in order to assess relative performance in signal-to-noise ratio (SNR) during electrocardiography, and electrode-skin impedance for a range of frequencies. Results show a direct relation between conformity of the electrode-skin interface and the SNR value. An all-integrated biomonitoring patch with embedded processing and communication electronics, hydrogel electrodes, and a multilayer liquid metal circuit is presented for electromyography.


Asunto(s)
Fenómenos Fisiológicos de la Piel , Dispositivos Electrónicos Vestibles , Dimetilpolisiloxanos/química , Impedancia Eléctrica , Electrodos , Electromiografía/métodos , Humanos , Hidrogeles/química , Monitoreo Fisiológico , Níquel/química , Relación Señal-Ruido , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...