Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(6): e10179, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325725

RESUMEN

Changing temperatures will impact food webs in ways we yet to fully understand. The thermal sensitivities of various physiological and ecological processes differ across organisms and study systems, hindering the generation of accurate predictions. One step towards improving this picture is to acquire a mechanistic understanding of how temperature change impacts trophic interactions before we can scale these insights up to food webs and ecosystems. Here, we implement a mechanistic approach centered on the thermal sensitivity of energetic balances in pairwise consumer-resource interactions, measuring the thermal dependence of energetic gain and loss for two resource and one consumer freshwater species. Quantifying the balance between energy gain and loss, we determined the temperature ranges where the balance decreased for each species in isolation (intraspecific thermal mismatch) and where a mismatch in the balance between consumer and resource species emerged (interspecific thermal mismatch). The latter reveals the temperatures for which consumer and resource energetic balances respond either differently or in the same way, which in turn informs us of the strength of top-down control. We found that warming improved the energetic balance for both resources, but reduces it for the consumer, due to the stronger thermal sensitivity of respiration compared to ingestion. The interspecific thermal mismatch yielded different patterns between the two consumer-resource pairs. In one case, the consumer-resource energetic balance became weaker throughout the temperature gradient, and in the other case it produced a U-shaped response. By also measuring interaction strength for these interaction pairs, we demonstrated the correspondence of interspecific thermal mismatches and interaction strength. Our approach accounts for the energetic traits of both consumer and resource species, which combined produce a good indication of the thermal sensitivity of interaction strength. Thus, this novel approach links thermal ecology with parameters typically explored in food-web studies.

2.
J Anim Ecol ; 91(9): 1869-1879, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35765925

RESUMEN

Apparent competition is one mechanism that can contribute to the complex dynamics observed in natural systems, yet it remains understudied in empirical systems. Understanding the dynamics that shape the outcome of processes like apparent competition is vital for appreciating how they influence natural systems. We empirically evaluated the role of indirect trophic interactions in driving apparent competition in a model laboratory system. Our experimental system was designed to let us evaluate combined direct and indirect interactions among species. Here we describe the results of a factorial experiment using two noncompeting prey (Colpidium kleini, a heterotroph, and Chlamydomonas reinhardtii, an autotroph) consumed by a generalist predator Euplotes eurystomus to explore the dynamics of apparent competition. To gain intuition into the potential mechanism driving the asymmetry in the observed results, we further explored the system using structural equation modelling. Our results show an important role of positive interactions and indirect effects contributing to apparent competition in this system with a marked asymmetrical outcome favouring one prey, Chlamydomonas. The selected structural equation supports a role of indirect facilitation; although Chlamydomonas (a photoautotroph) and Colpidium (a bacterivore) use different resources and therefor do not directly compete, Colpidium reduces bacteria that may compete with Chlamydomonas. In addition, formation of colonies by Chlamydomonas in response to predation by Euplotes provides an antipredator defence not available to Colpidium. Asymmetric apparent competition may be more common in natural systems than the symmetric interaction originally proposed in classic theory, suggesting that exploration of the mechanisms driving the asymmetry of the interaction can be a fruitful area of further research to better our understanding of interspecific interactions and community dynamics.


Asunto(s)
Modelos Biológicos , Conducta Predatoria , Animales , Cadena Alimentaria , Dinámica Poblacional , Conducta Predatoria/fisiología
3.
Ecology ; 103(7): e3711, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35362167

RESUMEN

Historical contingency has long figured prominently in the conceptual frameworks of evolutionary biology and community ecology. Evolutionary biologists typically consider the effects of chance mutation and historical contingency in driving divergence and convergence of traits in populations, whereas ecologists instead are often interested in the role of historical contingency in community assembly and succession. Although genetic differences among individuals in populations can influence community interactions, variability among populations of the same species has received relatively little attention for its potential role in community assembly and succession. We used a community-level study of experimental evolution in two compositionally different assemblages of protists and rotifers to explore whether initial differences in species abundances among communities attributed to differences in evolutionary history, persisted as species that continued to evolve over time. In each assemblage, we observed significant convergence between two invaded treatments initially differing in evolutionary history over an observation period equal to ~40-80 generations for most species. Nonetheless, community structure failed to converge completely across all invaded treatments within an assemblage to a single structure. This suggests that whereas the species in the assemblage represent a common selective regime, differences in populations reflecting their evolutionary history can produce long-lasting transient alternative community states. In one assemblage, we also observed increasing within-treatment variability among replicate communities over time, suggesting that ecological drift may be another factor contributing to community change. Although subtle, these transient alternative states, in which communities differed in the abundance of interacting species, could nonetheless have important functional consequences, suggesting that the role of evolution in driving these states deserves greater attention.


Asunto(s)
Evolución Biológica , Ecosistema , Humanos , Fenotipo
4.
Biol Rev Camb Philos Soc ; 96(5): 1933-1950, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33998139

RESUMEN

Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer-resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer-resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities.


Asunto(s)
Ecosistema , Cadena Alimentaria , Biodiversidad , Evolución Biológica , Tamaño Corporal , Humanos , Temperatura
5.
J Anim Ecol ; 89(2): 285-298, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31556097

RESUMEN

The causes and consequences of temporal variation in the abundance of organisms constitute central themes in ecological inquiry. Rapid evolution can occur over ecological time-scales, potentially resulting in altered temporal variation in abundance and complicating inferences about the consequences of temporal variation. We assessed whether evolution altered the temporal variability in species' abundances in simple assemblages of species. We then compared experimental results to predictions from two-species models to better understand our results in the context of competitive and predator-prey interactions. We compared founder populations and their evolved descendants in experimental communities of ciliates and rotifers. Using a series of orthogonal contrasts, we then evaluated whether: (a) evolutionary history of invaders or (b) residents, (c) co-evolution among invaders and residents, and (d) invasion itself altered temporal variability in species abundances following invasion by a novel species. Using two-species competition and predator-prey models, we also generated predictions to better understand the effects of evolution on temporal variation in the abundances of interacting species. Finally, we compared experimental and modelling results to aid in the interpretation of which interspecific interactions might be affected by ongoing evolution in our communities. In experimental populations, differing evolutionary histories resulted in significant differences among treatments in abundances and temporal variation in abundances of both resident and invading species. For the contrasts, we found evidence that evolutionary history of the invader and residents, co-evolution among invaders and residents, and invasion itself affected temporal variability in abundance, but the importance of each differed for the two communities and the species within those communities. When comparing experimental results to model predictions, the increased abundance and decreased temporal variation in one invader, Euplotes daidaleos, are potentially consistent with evolution resulting in reduced attack rates in the novel community. Evolutionary history alone can affect temporal variation in the abundances of species, generating important consequences for interspecific interactions among species and complicating inferences about the consequences of temporal variability in biological communities.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Dinámica Poblacional
7.
Ecol Lett ; 20(4): 524-538, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28176452

RESUMEN

Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single-stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self-sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species.


Asunto(s)
Ecosistema , Especies Introducidas , Fenómenos Fisiológicos de los Virus , Evolución Biológica , Dinámica Poblacional
8.
Ann Bot ; 119(6): 977-988, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119293

RESUMEN

Background and Aims: Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods: Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results: Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions: In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have root traits associated with rapid uptake of soil nutrients may be more likely to increase in abundance, while species without such traits may be less likely to keep pace with more productive species.


Asunto(s)
Bosques , Magnoliopsida/fisiología , Nitrógeno/metabolismo , Especies Introducidas , Magnoliopsida/crecimiento & desarrollo , New Jersey , Crecimiento Demográfico , Árboles/crecimiento & desarrollo , Árboles/fisiología
9.
Nat Ecol Evol ; 1(1): 13, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-28812559

RESUMEN

Evolution has the capacity to alter the course of biological invasions, although such changes remain mostly unexplored by experiments. Integrating evolution into studies of invasions is important, because species traits can potentially evolve in ways that either moderate or exacerbate the impacts of invasions. We have assessed whether species evolved during experimental invasions by comparing the performance of founder populations and their potentially evolved descendants in communities of ciliates and rotifers. Residents (analogous to native species) that have previous experience with invaders consistently reduced the performance of naive invaders, supporting the emergence of increased biotic resistance as one consequence of evolution during invasions. Experienced invaders exhibited both increased and decreased performance depending on the invader species considered. Through its influence on performance and species abundance, evolution also changed community composition during the course of invasions. The idiosyncratic patterns of evolutionary changes in invading and resident species complicate predictions about the long-term consequences of invasions from initial post-invasion dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...