Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 91(3): 033903, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260020

RESUMEN

In this study, we describe an advanced multi-functional, variable-energy positron beam system capable of measuring the energies of multiple "positron-induced" electrons in coincidence with the Doppler-shifted gamma photon resulting from the annihilation of the correlated positron. The measurements were carried out using the unique characteristics of the digital time-of-flight spectrometer and the gamma spectrometer available with the advanced positron beam system. These measurements have resulted in (i) the first digital time-of-flight spectrum of positron annihilation-induced Auger electrons generated using coincident signals from a high-purity Ge detector and a micro-channel plate, (ii) a two-dimensional array of the energy of Doppler-broadened annihilation gamma and the time-of-flight of positron-annihilation induced Auger electrons/secondary electrons measured in coincidence with the annihilation gamma photon, and (iii) the time-of-flight spectra of multiple secondary electrons ejected from a bilayer graphene surface as a result of the impact and/or annihilation of positrons. The novelty of the gamma-electron coincidence spectroscopy has been demonstrated by extracting the Doppler-broadened spectrum of gamma photons emitted due to the annihilation of positrons exclusively with 1s electrons of carbon. The width of the extracted Doppler-broadened gamma spectrum has been found to be consistent with the expected broadening of the annihilation gamma spectrum due to the momentum of the 1s electrons in carbon.

2.
Nat Commun ; 8: 16116, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703225

RESUMEN

Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...