Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687787

RESUMEN

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Asunto(s)
Ciervos , Flavivirus , Metagenómica , Garrapatas , Animales , Metagenómica/métodos , Japón/epidemiología , Ciervos/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Garrapatas/virología , Filogenia , Viroma/genética , Virión/genética , Sus scrofa/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Seroepidemiológicos , Genoma Viral
2.
J Med Entomol ; 61(3): 741-755, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417093

RESUMEN

Arthropod-derived cell lines serve as crucial tools for studying arthropod-borne viruses (arboviruses). However, it has recently come to light that certain cell lines harbor persistent infections of arthropod-specific viruses, which do not cause any apparent cytopathic effects. Moreover, some of these persistent viral infections either inhibit or promote the growth of arboviruses. Therefore, it is of utmost importance to identify the presence of such persistent viruses and understand their impact on arboviral infections. In this study, we conducted a comprehensive virome analysis of several arthropod-derived cell lines, including mosquito-derived NIID-CTR, Ar-3, MSQ43, NIAS-AeAl-2, CCL-126 cells, and tick-derived IDE8 cells, along with flesh fly-derived NIH-Sape-4 cells. The aim was to determine if these cells were infected with persistent viruses. The results revealed the presence of 15 persistent viruses in NIID-CTR, Ar-3, MSQ43, NIAS-AeAl-2, and IDE8 cells. Among these, 11 were already known arthropod-specific viruses, while the remaining 4 were novel viruses belonging to Orthophasmavirus, Rhabdoviridae, Totiviridae, and Bunyavirales. In contrast, CCL-126 and NIH-Sape-4 cells appeared to be free of viral infections. This study provides valuable insights into the diversity and latency of arthropod-specific viruses within arthropod-derived cell lines. Further investigations are required to explore persistent viral infections in other arthropod-derived cell cultures and their effects on arbovirus replication. Understanding these factors will enhance the accuracy and reliability of experimental data obtained using these cell lines.


Asunto(s)
Viroma , Animales , Línea Celular , Arbovirus/fisiología , Artrópodos/virología , Garrapatas/virología , Culicidae/virología
3.
Trop Med Health ; 51(1): 61, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919794

RESUMEN

BACKGROUND: Dengue fever, caused by the dengue virus (DENV), is the most common viral infection transmitted by Aedes mosquitoes (mainly Ae. aegypti and Ae. albopictus) worldwide. Aedes aegypti is not currently established in Japan, and Ae. albopictus is the primary vector mosquito for DENV in the country, but knowledge of its viral susceptibility is limited. Therefore, we aimed to clarify the status of DENV susceptibility by comparing the infection and dissemination dynamics of Japanese Ae. albopictus to all known DENV serotypes with those of Ae. aegypti. METHODS: After propagation of each DENV serotype in Vero cells, the culture supernatants were mixed with defibrinated rabbit blood and adenosine triphosphate, and the mixture was artificially blood-sucked by two colonies of Ae. albopictus from Japan and one colony of Ae. aegypti from a dengue-endemic country (Vietnam). After 14 days of sucking, the mosquito body was divided into two parts (thorax/abdomen and head/wings/legs) and total RNA was extracted from each sample. DENV RNA was detected in these extracted RNA samples using a quantitative RT-PCR method specific for each DENV serotype, and infection and dissemination rates were analyzed. RESULTS: The Japanese Ae. albopictus colonies were susceptible to all DENV serotypes. Its infection and dissemination rates were significantly lower than those of Ae. aegypti. However, the number of DENV RNA copies in Ae. albopictus was almost not significantly different from that in Ae. aegypti. Furthermore, Japanese Ae. albopictus differed widely in their susceptibility to each DENV serotype. CONCLUSIONS: In Japanese Ae. albopictus, once DENV overcame the midgut infection barrier, the efficiency of subsequent propagation and dissemination of the virus in the mosquito body was comparable to that of Ae. aegypti. Based on the results of this study and previous dengue outbreak trends, Ae. albopictus is predicted to be highly compatible with DENV-1, suggesting that this serotype poses a high risk for future epidemics in Japan.

4.
J Med Entomol ; 60(3): 620-628, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37027507

RESUMEN

In Asia, Culex mosquitoes are of particular interest because of their role in maintaining endemic mosquito-borne viral diseases, including the Japanese encephalitis virus (JEV). Nonetheless, host-feeding preferences, along with naturally infecting RNA viruses in certain Culex species, remain understudied. In this study, selected blood-fed mosquitoes were processed for avian and mammalian blood meal source identification. Concurrently, cell culture propagation and high-throughput sequencing (HTS) approaches were used to determine the RNA virome of Culex mosquitoes collected in Ishikawa Prefecture, Japan. The identification of blood meal sources from wild-caught Culex spp. revealed that Culex (Culex) tritaeniorhynchus Giles, 1901, has a robust preference toward wild boar (62%, 26/42), followed by heron (21%, 9/42). The other two species, Culex (Oculeomyia) bitaeniorhynchus Giles, 1901, and Culex (Culex) orientalis Edwards, 1921, showed a distinct preference for avian species, including migratory birds. From the HTS results, 34 virus sequences were detected, four of which were newly identified virus sequences of unclassified Aspiviridae, Qinviridae, Iflaviridae, and Picornaviridae. The absence of observable cytopathic effects in mammalian cells and phylogenetic analysis suggested that all identified virus sequences were insect-specific. Further investigations involving other mosquito populations collected in different areas are warranted to explore previously unknown vertebrate hosts that may be linked to JEV dispersal in nature.


Asunto(s)
Culex , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Encefalitis Japonesa (Especie)/genética , ARN , Viroma , Japón , Filogenia , Mosquitos Vectores , Aves , Culex/genética , Sus scrofa
5.
Parasit Vectors ; 16(1): 99, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922882

RESUMEN

BACKGROUND: The Getah virus (GETV) is a mosquito-borne Alphavirus (family Togaviridae) that is of significant importance in veterinary medicine. It has been associated with major polyarthritis outbreaks in animals, but there are insufficient data on its clinical symptoms in humans. Serological evidence of GETV exposure and the risk of zoonotic transmission makes GETV a potentially medically relevant arbovirus. However, minimal emphasis has been placed on investigating GETV vector transmission, which limits current knowledge of the factors facilitating the spread and outbreaks of GETV. METHODS: To examine the range of the mosquito hosts of GETV, we selected medically important mosquitoes, assessed them in vitro and in vivo and determined their relative competence in virus transmission. The susceptibility and growth kinetics of GETVs in various mosquito-derived cell lines were also determined and quantified using plaque assays. Vector competency assays were also conducted, and quantitative reverse transcription-PCR and plaque assays were used to determine the susceptibility and transmission capacity of each mosquito species evaluated in this study. RESULTS: GETV infection in all of the investigated mosquito cell lines resulted in detectable cytopathic effects. GETV reproduced the fastest in Culex tritaeniorhynchus- and Aedes albopictus-derived cell lines, as evidenced by the highest exponential titers we observed. Regarding viral RNA copy numbers, mosquito susceptibility to infection, spread, and transmission varied significantly between species. The highest vector competency indices for infection, dissemination and transmission were obtained for Cx. tritaeniorhynchus. This is the first study to investigate the ability of Ae. albopictus and Anopheles stephensi to transmit GETV, and the results emphasize the role and capacity of other mosquito species to transmit GETV upon exposure to GETV, in addition to the perceived vectors from which GETV has been isolated in nature. CONCLUSIONS: This study highlights the importance of GETV vector competency studies to determine all possible transmission vectors, especially in endemic regions.


Asunto(s)
Aedes , Alphavirus , Culex , Humanos , Animales , Alphavirus/genética , Especificidad del Huésped , Mosquitos Vectores
7.
Viruses ; 15(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36680278

RESUMEN

Genotype IV Japanese encephalitis (JE) virus (GIV JEV) is the least common and most neglected genotype in JEV. We evaluated the growth and pathogenic potential of the GIV strain 19CxBa-83-Cv, which was isolated from a mosquito pool in Bali, Indonesia, in 2019, and serological analyses were also conducted. The growth ability of 19CxBa-83-Cv in Vero cells was intermediate between that of the genotype I (GI) strain Mie/41/2002 and the genotype V (GV) strain Muar, whereas 19CxBa-83-Cv and Mie/41/2002 grew faster than Muar in mouse neuroblastoma cells. The neuroinvasiveness of 19CxBa-83-Cv in mice was higher than that of Mie/41/2002 but lower than that of Muar; however, there were no significant differences in neurovirulence in mice among the three strains. The neutralizing titers of sera from 19CxBa-83-Cv- and Mie/41/2002-inoculated mice against 19CxBa-83-Cv and Mie/41/2002 were similar, whereas the titers against Muar were lower than those of the other two viruses. The neutralizing titers of JE vaccine-inoculated mouse pool serum against 19CxBa-83-Cv and Muar were significantly lower than those against Mie/41/2002. The neutralizing titers against the three viruses were similar in three out of the five serum samples from GI-infected JE patients, although the titers against Mie/41/2002 were higher than those against 19CxBa-83-Cv and Muar in the remaining two sera samples. In summary, we identified the basic characteristics of 19CxBa-83-Cv, but further studies are needed to better understand GIV JEV.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Chlorocebus aethiops , Animales , Ratones , Anticuerpos Neutralizantes , Células Vero , Anticuerpos Antivirales , Genotipo
8.
Am J Trop Med Hyg ; 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35405649

RESUMEN

Japanese encephalitis virus (JEV), a mosquito-borne virus, causes severe clinical symptoms in humans in the Asian-Pacific region, where it circulates in a primary transmission cycle among Culex tritaeniorhynchus mosquitoes, domestic swine (Sus scrofa domesticus), and wading birds. We report here an anomalous result that mosquito-borne JEV was detected in unfed host-questing ticks collected from the field in Japan. JEV genomic RNA was detected in four pools of Haemaphysalis flava nymphs collected in November and December 2019, and March 2020, when Cx. tritaeniorhynchus adults were not presumed to be active. Moreover, JEV antigenomic RNA was detected in some JEV-positive tick samples, suggesting virus replication in ticks. However, taken together with no infectious virus isolated, the possibility that the antigenomic RNA was derived from the undigested bloodmeal source in ticks cannot be ruled out. Thus, the role of the ticks as a natural reservoir for JEV remains to be confirmed.

9.
Jpn J Infect Dis ; 75(2): 195-198, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-34470960

RESUMEN

Viruses belonging to the genus Quaranjavirus in the family Orthomyxoviridae are known as argasid tick-borne viruses. Some viruses in this genus or an unassigned quaranjavirus-like variant can infect humans, although little is known about their pathogenicity. During the surveillance of tick-borne viruses in ixodid ticks in Ehime Prefecture, Japan, novel quaranjavirus-like sequences were detected in 3 pooled samples of Haemaphysalis histricis nymphs. Phylogenetic analysis revealed that the detected viruses formed a cluster with quaranjaviruses and other related viruses. Specifically, the viruses were closely related to Zambezi tick virus 1 and Uumaja virus, which are quaranjavirus-like viruses recently discovered in ixodid ticks in Africa and Europe, respectively. These findings indicate that the viruses detected in this study were probably new members of the Quaranjavirus genus or a related group. The viruses were tentatively named "Ohshima virus" even though only limited sequences of their genomes were available. This is the first report on the detection of a quaranjavirus-like virus in the East Asian region. Further investigations are needed to discern its infectivity and pathogenicity against humans and other animals and to determine the potential risk of an emerging tick-borne viral disease.


Asunto(s)
Ixodidae , Orthomyxoviridae , Garrapatas , Animales , Japón/epidemiología , Filogenia
10.
Arch Virol ; 167(1): 123-130, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34757503

RESUMEN

Ticks are blood-sucking arthropods that transmit many pathogens, including arboviruses. Arboviruses transmitted by ticks are generally referred to as tick-borne viruses (TBVs). TBVs are known to cause diseases in humans, pets, and livestock. There is, however, very limited information on the occurrence and distribution of TBVs in sub-Saharan Africa. This study was designed to determine the presence and distribution of ticks infesting dogs and cattle in Ghana, as well as to identify the tick-borne or tick-associated viruses they harbour. A more diverse population of ticks was found to infest cattle (three genera) relative to those infesting dogs (one genus). Six phleboviruses and an orthonairovirus were detected in tick pools screened by RT-PCR. Subsequent sequence analysis revealed two distinct phleboviruses and the previously reported Odaw virus in ticks collected from dogs and a virus (16GH-T27) most closely related to four unclassified phleboviruses in ticks collected from cattle. The virus 16GH-T27 was considered a strain of Balambala tick virus (BTV) and named BTV strain 16GH-T27. Next-generation sequencing analysis of the BTV-positive tick pool detected only the L and S segments. Phylogenetic analysis revealed that BTV clustered with viruses previously defined as M-segment-deficient phleboviruses. The orthonairovirus detected in ticks collected from cattle was confirmed to be the medically important Dugbe virus. Furthermore, we discuss the importance of understanding the presence and distribution of ticks and TBVs in disease prevention and mitigation and the implications for public health. Our findings contribute to the knowledge pool on TBVs and tick-associated viruses.


Asunto(s)
Phlebovirus , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Bovinos , Perros , Ghana/epidemiología , Filogenia , Virus Satélites , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria
11.
Viruses ; 13(12)2021 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-34960816

RESUMEN

Jingmen tick virus (JMTV) and the related jingmenvirus-termed Alongshan virus are recognized as globally emerging human pathogenic tick-borne viruses. These viruses have been detected in various mammals and invertebrates, although their natural transmission cycles remain unknown. JMTV and a novel jingmenvirus, tentatively named Takachi virus (TAKV), have now been identified during a surveillance of tick-borne viruses in Japan. JMTV was shown to be distributed across extensive areas of Japan and has been detected repeatedly at the same collection sites over several years, suggesting viral circulation in natural transmission cycles in these areas. Interestingly, these jingmenviruses may exist in a host tick species-specific manner. Vertical transmission of the virus in host ticks in nature was also indicated by the presence of JMTV in unfed host-questing Amblyomma testudinarium larvae. Further epidemiological surveillance and etiological studies are necessary to assess the status and risk of jingmenvirus infection in Japan.


Asunto(s)
Arbovirus/aislamiento & purificación , Garrapatas/virología , Animales , Arbovirus/clasificación , Arbovirus/genética , Especificidad del Huésped , Transmisión Vertical de Enfermedad Infecciosa , Larva/virología , Filogenia
12.
Arch Virol ; 166(10): 2751-2762, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34341873

RESUMEN

Ticks are important vector arthropods that transmit various pathogens to humans and other animals. Tick-borne viruses are of particular concern to public health as these are major agents of emerging and re-emerging infectious diseases. The Phenuiviridae family of tick-borne viruses is one of the most diverse groups and includes important human pathogenic viruses such as severe fever with thrombocytopenia syndrome virus. Phenuivirus-like sequences were detected during the surveillance of tick-borne viruses using RNA virome analysis from a pooled sample of Haemaphysalis formosensis ticks collected in Ehime, Japan. RT-PCR amplification and Sanger sequencing revealed the nearly complete viral genome sequence of all three segments. Comparisons of the viral amino acid sequences among phenuiviruses indicated that the detected virus shared 46%-70% sequence identity with known members of the Kaisodi group in the genus Uukuvirus. Furthermore, phylogenetic analysis of the viral proteins showed that the virus formed a cluster with the Kaisodi group viruses, suggesting that this was a novel virus, which was designated "Toyo virus" (TOYOV). Further investigation of TOYOV is needed, and it will contribute to understanding the natural history and the etiological importance of the Kaisodi group viruses.


Asunto(s)
Virus ARN de Sentido Negativo/clasificación , Garrapatas/virología , Secuencia de Aminoácidos , Animales , Genoma Viral/genética , Humanos , Japón , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/aislamiento & purificación , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética , Viroma/genética
13.
Am J Trop Med Hyg ; 105(3): 813-817, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34280147

RESUMEN

Japanese encephalitis virus (JEV) is transmitted between swine, migratory birds, and Culex mosquitoes, and has circulated indigenously in Asia for almost a century. Despite being the country with the highest JEV diversity, surveillance targeting of Indonesia's vectors is scarce. This study collected mosquitoes from several locations in Tabanan Regency, Bali Island, Indonesia. We captured and classified 3,032 adult Culex mosquitoes into seven species, with Culex vishnui subgroup mosquitoes making up approximately 90% of the total. Japanese encephalitis virus was identified by next-generation sequencing (NGS) analysis of a Cx. vishnui mosquito pool. Genetic and phylogenetic analysis revealed the JEV as genotype (G) IV. The nucleotide identity was 99% with other JEV GIV isolates obtained from swine sera in 2017 on Bali Island and from a human patient in Australia with a travel history to Bali in 2019. This finding indicated that JEV GIV persists in restricted areas and is circulating between swine-mosquito vectors.


Asunto(s)
Culex/virología , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Insectos Vectores/virología , Animales , Virus de la Encefalitis Japonesa (Especie)/genética , Genotipo , Indonesia
14.
Parasit Vectors ; 14(1): 228, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926510

RESUMEN

BACKGROUND: Dengue virus (DENV) is a mosquito-borne arbovirus transmitted by Aedes mosquitoes, but is not endemic in all areas where this vector is found. For example, the relatively sparse distribution of cases in West Africa is generally attributed to the refractory nature of West African Aedes aegypti (Ae. aegypti) to DENV infection, and particularly the forest-dwelling Ae. aegypti formosus. However, recent studies have shown these mosquitoes to be competent vectors within some West African countries that have suffered outbreaks in the past, such as Senegal. There is however little information on the vector competence of the Ae. aegypti in West African countries such as Ghana with no reported outbreaks. METHODS: This study examined the vector competence of 4 Ae. aegypti colonies from urban, semi-urban, and two rural locations in Ghana in transmitting DENV serotypes 1 and 2, using a single colony from Vietnam as control. Midgut infection and virus dissemination were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while the presence and concentration of DENV in the saliva of infectious mosquitoes was determined by the focus forming assay. RESULTS: There were significant differences in the colonies' susceptibility to virus infection, dissemination, and transmission. All examined Ghanaian mosquitoes were refractory to infection by DENV serotype 2, while some colonies exhibited potential to transmit DENV serotype 1. None of the tested colonies were as competent as the control group colony. CONCLUSIONS: These findings give insight into the possible risk of outbreaks, particularly in the urban areas in the south of Ghana, and highlight the need for continuous surveillance to determine the transmission status and outbreak risk. This study also highlights the need to prevent importation of different DENV strains and potential invasion of new highly vector-competent Ae. aegypti strains, particularly around the ports of entry.


Asunto(s)
Aedes/virología , Virus del Dengue/aislamiento & purificación , Serogrupo , Animales , Dengue/transmisión , Vectores de Enfermedades , Ghana , Humanos , Mosquitos Vectores/virología , Saliva/virología
15.
J Med Entomol ; 58(2): 880-890, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33710314

RESUMEN

Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.


Asunto(s)
Dípteros/virología , Flavivirus , Interacciones Microbiota-Huesped , Filogenia , Animales , Coevolución Biológica , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/aislamiento & purificación , Genes Virales , Genoma Viral , ARN/genética , Viroma/genética
16.
Virus Res ; 292: 198254, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33276024

RESUMEN

Viruses are highly diverse and are the sole agents that can infect organisms in all domains of life. Viruses are defined as capsid-encoding organisms as opposed to ribosome-encoding cellular organisms. However, recent advances in virology indicate the existence of unique viruses that do not meet this basic definition, such as capsidless viruses. During virome analysis of the soft tick Argas japonicus, we identified virus-like sequences closely related to the members of genus Nyavirus (family Nyamiviridae). Further analysis revealed sequences derived from a novel nyavirus that lacks two structural protein genes, matrix (M) and glycoprotein (G). This unique nyavirus is tentatively named Sekira virus (SEKRV). To our knowledge, this is the first study to report a nyavirus deficient in M and G genes in nature. The mechanism of infection, replication, and persistence of SEKRV remain unknown, yet this finding provides new insight into virus evolution and the diverse way of viral life in nature.


Asunto(s)
Argas/virología , Glicoproteínas/deficiencia , Proteínas de la Matriz Viral/deficiencia , Virus/aislamiento & purificación , Animales , Evolución Molecular , Glicoproteínas/genética , Filogenia , Proteínas de la Matriz Viral/genética , Replicación Viral , Virus/clasificación , Virus/genética
17.
PLoS Negl Trop Dis ; 14(12): e0008986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370301

RESUMEN

Japanese encephalitis virus (JEV) is maintained in an enzootic cycle between swine, water birds, and mosquitoes. JEV has circulated indigenously in Asia, with Culex tritaeniorhynchus as the primary vector. In some areas where the primary vector is scarce or absent, sporadic cases of Japanese encephalitis have been reported, with Aedes japonicus japonicus presumed to have the potential as a secondary vector. As one of the world's most invasive culicid species, Ae. j. japonicus carries a considerable health risk for spreading diseases to wider areas, including Europe and North America. Thus, evaluation of its competency as a JEV vector, particularly in a native population, will be essential in preventing potential disease spread. In this study, the two mosquito species' vector competence in transmitting three JEV genotypes (I, III, and V) was assessed, with Cx. tritaeniorhynchus serving as a point of reference. The mosquitoes were virus-fed and the infection rate (IR), dissemination rate (DR), and transmission rate (TR) evaluated individually by either RT-qPCR or focus forming assay. Results showed striking differences between the two species, with IR of 95% (261/274) and 9% (16/177) in Cx. tritaeniorhynchus and Ae. j. japonicus, respectively. Both mosquitoes were susceptible to all three JEV genotypes with significant differences in IR and mean viral titer. Results confirm the primary vector's competence, but the fact that JEV was able to establish in Ae. j. japonicus is of public health significance, and with 2%-16% transmission rate it has the potential to successfully transmit JEV to the next host. This may explain the human cases and infrequent detection in primary vector-free areas. Importantly, Ae. j. japonicus could be a relevant vector spreading the disease into new areas, indicating the need for security measures in areas where the mosquito is distributed or where it may be introduced.


Asunto(s)
Aedes/virología , Culex/virología , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/transmisión , Mosquitos Vectores/virología , Animales , Asia/epidemiología , Línea Celular , Chlorocebus aethiops , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/epidemiología , Genotipo , Humanos , Células Vero , Proteínas del Envoltorio Viral/genética
18.
In Vitro Cell Dev Biol Anim ; 56(9): 792-798, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33000384

RESUMEN

Mosquitoes are generally considered one of the most important vectors of arboviruses, with Aedes aegypti regarded as the most important in transmission of yellow fever and dengue viruses. To investigate why there are differences in the incidence of dengue fever and Zika in different geographical areas and an absence of outbreaks in Ghana in spite of an abundance of A. aegypti mosquitoes, we established a continuous cell line from embryonic cells of A. aegypti collected in Ghana and assessed its susceptibility to dengue, yellow fever, and Zika viruses. The new cell line (designated AeAe-GH98), having an adhesive spindle-shaped web-like morphology, was serially subcultured in both VP-12 and Schneider's medium supplemented with 10% heat-inactivated fetal bovine serum. AeAe-GH98 cells were found to have a population doubling time of 1.3 d during exponential growth. The mosquito colony used to establish the cell line was confirmed to have originated from Africa using microsatellite assay. In terms of susceptibility to Aedes-borne flaviviruses, AeAe-GH98 cells were found to have different degrees of susceptibility to yellow fever, Zika, and dengue virus infection and propagation. While susceptibility of AeAe-GH98 cells to yellow fever and Zika viruses was comparable with that of C6/36 cells, susceptibility to dengue virus was significantly lower. This cell line will serve as a useful tool for determining molecular factors influencing virus-vector susceptibility in vitro.


Asunto(s)
Aedes/virología , Flaviviridae/fisiología , Aedes/citología , Animales , Línea Celular , Proliferación Celular , Forma de la Célula , Células Cultivadas , Virus del Dengue/fisiología , Análisis Discriminante , Ghana , Cariotipificación , Análisis de Componente Principal , Virus de la Fiebre Amarilla/fisiología , Virus Zika/fisiología
19.
Viruses ; 12(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121094

RESUMEN

Japanese encephalitis (JE) remains a public health concern in several countries, and the Culex mosquito plays a central role in its transmission cycle. Culex mosquitoes harbor a wide range of viruses, including insect-specific viruses (ISVs), and can transmit a variety of arthropod-borne viruses (arboviruses) that cause human and animal diseases. The current trend of studies displays enhanced efforts to characterize the mosquito virome through bulk RNA sequencing due to possible arbovirus-ISV interactions; however, the extent of viral diversity in the mosquito taxon is still poorly understood, particularly in some disease vectors. In this study, arboviral screening and RNA virome analysis of Culex tritaeniorhynchus and C. pseudovishnui, which are part of the Culex vishnui subgroup mosquitoes, were performed. Results from these two mosquito species, known as the major vectors of JE virus (JEV) in Asia, collected in three prefectures in Japan were also compared with the sympatric species C. inatomii. A total of 27 viruses, including JEV, were detected from these Culex mosquitoes. Molecular and phylogenetic analyses of the detected viruses classified 15 of the 27 viruses as novel species, notably belonging to the Flaviviridae, Rhabdoviridae, Totiviridae, and Iflaviridae families. The successful isolation of JEV genotype I confirmed its continuous presence in Japan, suggesting the need for periodic surveillance. Aside from JEV, this study has also reported the diversity of the RNA virome of disease vectors and broadened the knowledge on mosquito virome profiles containing both arbovirus and ISV. Mosquito taxon seemed to contribute largely to the virome structure (e.g., virome composition, diversity, and abundance) as opposed to the geographical location of the mosquito species. This study therefore offers notable insights into the ecology and evolution of each identified virus and viral family. To the authors' knowledge, this is the first study to characterize the viromes of the major JE vectors in Japan.


Asunto(s)
Culex/virología , Virus de la Encefalitis Japonesa (Subgrupo)/fisiología , Encefalitis Japonesa/transmisión , Encefalitis Japonesa/virología , Mosquitos Vectores/virología , Viroma , Animales , Biodiversidad , Culex/clasificación , Encefalitis Japonesa/epidemiología , Genoma Viral , Geografía Médica , Japón/epidemiología , Metagenoma , Metagenómica/métodos , Mosquitos Vectores/clasificación , Filogenia , Vigilancia en Salud Pública , Virus/clasificación , Virus/genética
20.
Viruses ; 12(2)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012771

RESUMEN

Entomological surveillance is one of the tools used in monitoring and controlling vector-borne diseases. However, the use of entomological surveillance for arboviral infection vector control is often dependent on finding infected individuals. Although this method may suffice in highly endemic areas, it is not as effective in controlling the spread of diseases in low endemic and non-endemic areas. In this study, we examined the efficiency of using entomological markers to assess the status and risk of arbovirus infection in Ghana, which is considered a non-endemic country, by combining mosquito surveillance with virus isolation and detection. This study reports the presence of cryptic species of mosquitoes in Ghana, demonstrating the need to combine morphological identification and molecular techniques in mosquito surveillance. Furthermore, although no medically important viruses were detected, the importance of insect-specific viruses in understanding virus evolution and arbovirus transmission is discussed. This study reports the first mutualistic relationship between dengue virus and the double-stranded RNA Aedes aegypti totivirus. Finally, this study discusses the complexity of the virome of Aedes and Culex mosquitoes and its implication for arbovirus transmission.


Asunto(s)
Aedes/virología , Infecciones por Arbovirus/transmisión , Arbovirus/genética , Culex/virología , Mosquitos Vectores/virología , Viroma , Animales , Infecciones por Arbovirus/epidemiología , Arbovirus/aislamiento & purificación , Dengue/epidemiología , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Entomología/métodos , Femenino , Ghana/epidemiología , Masculino , Factores de Riesgo , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...