Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893976

RESUMEN

The following study presents the results of research in the field of the performance of geopolymers consisting of Class F fly ash with an alkaline activator solution consisting only of sodium metasilicate (Na2SiO3) and water. The performances of this geopolymer are compared to the those of American Petroleum Institute (API) Class G cement. This comparison is to evaluate the potential of the geopolymer as an alternative to cement in cementing hydrocarbon wells in the oil and gas industry. The gap in the research is determining the performance properties that restrict the use of fly ash in the oil and gas industry. Using only sodium metasilicate as an activator with water, the solution creates a strong binding gel for the geopolymer and activates the aluminosilicate properties of the fly ash. This geopolymer is compared with Class G cement without additives to determine their base performances in high pressure and high temperature conditions, as well as note any properties that are affected in the process. This commences by formulating recipes of these two materials from workable ratios and concentrations. The ratios are narrowed down to the best working models to proceed to comparative performance testing. The tests included exploring their vital performances in fluid loss and thickening time. The results produced suggest that Class G cement generally has less fluid loss at low temperature than the geopolymer but could not maintain its integrity and structure as temperatures increased. Class G cement exhibited stability, consistencies of 100 Bcs (Bearden Consistency Units), and a faster thickening time of 1 h and 48 min when placed under high temperature and high-pressure conditions, respectively. However, the geopolymer showed more consistency regarding fluid loss with respect to rising pressure and temperature, and smoother, less fractured samples emerging from both tests. Though the geopolymer showed stronger performances in thickening and water retention, the experiments showed that it is not a uniform and consistent material like Class G cement. Through the use of different additives and intricate design, the sample may show success, but may prove more difficult and complex to apply than the industry standard and uniform content of Class G cement.

2.
Polymers (Basel) ; 15(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631461

RESUMEN

The ability of cement to withstand harsh conditions is one of its most vital properties, especially in hydrocarbon wells, due to their association with high temperatures, high pressures, acidic components, and erosion. Conventional cement is prone to failure under extreme conditions and is also a costly component in oil and gas wells. This research evaluated the ability of a newly developed cement composed of fly ash reinforced with epoxy resin to withstand the harsh conditions of oil and gas wells. The novel cement was tested for its ability to resist high concentrations of hydrochloric acid (HCl) and sodium hydroxide (NaOH), high salinity, high temperatures, high pressures, gaseous and supercritical carbon dioxide (CO2), and crude oil. Results showed that the novel cement had an overall excellent ability to perform under extreme conditions. The performance of the cement was a strong function of the fly ash concentration, with an increase in the fly ash concentration resulting in improvement in the cement. For all tests, the highest degradation for the novel cement that occurred was 0.62% after 7 continuous days of exposure, which is considered an extremely low value. This shows that the novel cement has a strong ability to maintain its integrity under extreme conditions.

3.
Polymers (Basel) ; 15(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37447595

RESUMEN

Polymers are one of the most widely used chemicals in the oil and gas industry. They are used for mobility control in enhanced oil recovery, in conformance control as a cross-linked plugging agent, as a fracking fluid for fracture propagation and proppant transportation, and in drilling fluids as an additive for drilling mud enhancement. This research characterizes the polymer injectivity in different pore sizes under different conditions and evaluates the polymer conditions after injection. Based on this, the ability to reinject the polymer in the porous media is discussed. The factors studied include the pore size, the polymer concentration, the polymer injection flowrate, and polymer injectivity. When the porous media size was reduced to 1.59 mm (1/16th of an inch), the injectivity value reduced significantly, reaching less than 0.2 mL/min/psi and the polymer degradation increased primarily due to shearing. Results also showed that the polymers underwent four main degradations during injection including dehydration, syneresis, shearing, and excessive hydrolysis. In continuous fractures, the degradation is a strong function of the fracture size, length, and the polymer structure. The experimental results showed that one or more of the polymer degradations resulted in the inability to reinject the polymer in most cases.

4.
Polymers (Basel) ; 16(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38201740

RESUMEN

Polymer flooding is an enhanced oil recovery (EOR) method used to increase oil recovery from oil reservoirs beyond primary and secondary recovery. Although it is one of the most well-established methods of EOR, there are still continuous new developments and evaluations for this method. This is mainly attributed to the diverse polymers used, expansion of this method in terms of application, and the increase in knowledge pertaining to the topic due to the increase in laboratory testing and field applications. In this research, we perform a review of the factors impacting polymer flooding in both laboratory studies and field-based applications in order to create guidelines with respect to the parameters that should be included when designing a polymer flooding study or application. The main mechanism of polymer flooding is initially discussed, along with the types of polymers that can be used in polymer flooding. We then discuss the most prominent parameters that should be included when designing a polymer flooding project and, based on previous laboratory studies and field projects, discuss how these parameters impact the polymer itself and the flooding process. This research can provide guidelines for researchers and engineers for future polymer flooding research or field applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA