Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6875, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106012

RESUMEN

Heavy metals (H.M) are a major environmental concern around the world. They have harmful impact on plant productivity and pose a serious risk to humans and animals health. In the present study, we investigated the effect of Aphanothece crude extract (ACE) on physiological, biochemical, and metabolic responses of tomato plant exposed to 2 mM Pb and Cd. The results showed a significant reduction of tomato plant weights and perturbation in nutrients absorption under 2 mM Pb and Cd conditions. Moreover, ACE treatment showed a significant enhancement of plant biomass compared to plants under Pb and Cd. On the other hand, ACE application favoured H.M accumulation in root and inhibited their translocation to shoot. In addition, ACE treatment significantly enhanced several stress responses in plant under Pb and Cd stress such as scavenging enzymes and molecules: POD, CAT, SOD, proline, and polyphenols etc. Furthermore, ACE treatment showed remodulation of metabolic pathways related to plant tolerance such as wax construction mechanism, particularly SFA, UFA, VLFA, alkanes, alkenes, and sterols biosynthesis to enhance tolerance and resistance to H.M stress. In the present study, we emphasized that ACE alleviates H.M stress by minimizing metal translocation to above-part of plant and enhancing plant growth, nutrients absorption, and biochemical responses.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum lycopersicum , Humanos , Cadmio/metabolismo , Plomo/metabolismo , Metales Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Estrés Fisiológico
2.
Heliyon ; 8(1): e08811, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35118209

RESUMEN

Salinity is one of the most significant environmental factors limiting microalgal biomass productivity. In the present study, the model microalga Chlamydomonas reinhardtii (C. reinhardtii) was exposed to 200 mM NaCl for eight days to explore the physiological, biochemical and metabolomic changes. C. reinhradtii exhibited a significant decrease in growth rate, and Chl a and Chl b levels. 200 mM NaCl induced ROS generation in C. reinhardtii with increase in H2O2 content. This caused lipid peroxidation with increase in MDA levels. C. reinhardtii also exhibited an increase in carbohydrate and lipid accumulation under 200 mM NaCl conditions as storage molecules in cells to maintain microalgal survival. In addition, NaCl stress increased the content of carotenoids, polyphenols and osmoprotectant molecules such as proline. SOD and APX activities decreased, while ROS-scavenger enzymes (POD and CAT) decreased. Metabolomic response showed an accumulation of the major molecules implicated in membrane remodelling and stress resistance such oleic acid (40.29%), linolenic acid (19.29%), alkanes, alkenes and phytosterols. The present study indicates the physiological, biochemical and metabolomic responses of C. reinhardtii to salt stress.

3.
Int J Phytoremediation ; 24(1): 34-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34000939

RESUMEN

Microalgae have been studied for their potential of wastewater treatment as well as a promising source for biodiesel production. This study investigates the potential of microalgae to remove nutrients from domestic wastewater (DWW) while producing lipids-rich biomass for biodiesel production. Eight microalgae were cultivated in (DWW) to evaluate their nutrients removal capacity and biomass production. Total phosphorus (TP) of DWW reduced from 2 mg L-1 to 0.02 mg L-1 with the treatment efficiency of 99.15% and the highest performance was noted in Chlamydomonas reinhardtii (C. reinhardtii). For total nitrogen (TN), treatment efficiency climbed to 99.07%. It is reduced from 18.35 to 0.17 mg L-1 recorded in C. reinhardtii and Chlorella pyrenoidosa (C. pyrenoidosa). On the other hand, all microalgae showed a high lipids-rich biomass in wastewater compared to BG11. The highest lipid content was 36.93% noted in Chlorella sorokiniana (C. sorokiniana). Fatty acids methyl ester (FAME) profiles showed a high content of palmitic C16:0, oleic C18:1 and stearic acids C18:0 in studied microalgae strains. In summary, microalgae envisage its potential application in integrated wastewater treatment and biodiesel production. In perspective, the authors focus on the validation of this bioprocess in pilot scale. Furthermore, the use of microalgae for other applications such CO2 biosequestration and added value products. Novelty statement: The present study investigates the potential of Moroccan microalgae as candidates to wastewater remediation and high biomass production with high lipid rate for biodiesel production.


Asunto(s)
Chlorella , Microalgas , Purificación del Agua , Biodegradación Ambiental , Biocombustibles , Biomasa , Nitrógeno/análisis , Aguas Residuales
4.
Chemosphere ; 291(Pt 2): 133036, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34822867

RESUMEN

The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.


Asunto(s)
Materiales Biocompatibles , Lignina , Agricultura , Acuicultura , Biocombustibles , Biomasa , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA