Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2001, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037805

RESUMEN

DNA is a universal and programmable signal of living organisms. Here we develop cell-based DNA sensors by engineering the naturally competent bacterium Bacillus subtilis (B. subtilis) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA extraction. The modularity of the living cell-based DNA-sensing mechanism and simple detection procedure could enable programmable DNA sensing for a wide range of applications.


Asunto(s)
Bacillus subtilis , Bacterias , Técnicas Biosensibles , Ingeniería Celular , ADN Bacteriano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Técnicas Biosensibles/métodos , Humanos , ADN Bacteriano/análisis , ADN Bacteriano/genética , Fluorescencia , Viabilidad Microbiana , Biología Sintética , Redes Reguladoras de Genes/genética , Genes Reporteros/genética , Técnicas In Vitro , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones Bacterianas/microbiología
2.
Mol Syst Biol ; 19(3): e11406, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36714980

RESUMEN

The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.


Asunto(s)
Antibacterianos , ADN , Técnicas de Cocultivo , Plásmidos/genética , Antibacterianos/farmacología , Transferencia de Gen Horizontal
3.
J Bacteriol ; 204(3): e0051821, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041498

RESUMEN

Natural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a few proteins required for natural transformation in Gram-positive bacteria. Its structural resemblance to the DEAD box helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5' to 3'. However, this translocase activity does not lead to DNA unwinding under the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake. IMPORTANCE Competence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation, is common in the bacterial kingdom. Research in several bacterial species suggests that long, contiguous stretches of DNA are imported into cells in a processive manner, but how bacteria power transformation remains unclear. Our finding that ComFA, a DEAD box helicase required for competence in Gram-positive bacteria, translocates on single-stranded DNA from 5' to 3', supports the long-held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DEAD box helicase-one with the capability of extended translocation on single-stranded DNA.


Asunto(s)
Adenosina Trifosfatasas , ADN de Cadena Simple , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN , ADN Helicasas/metabolismo , ADN de Cadena Simple/genética
4.
Front Plant Sci ; 11: 910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733502

RESUMEN

Auxin is transported in plants with distinct polarity, defined by transport proteins of the PIN-formed (PIN) family. Components of the complex trafficking machinery responsible for polar PIN protein localization have been identified by genetic approaches, but severe developmental phenotypes of trafficking mutants complicate dissection of this pathway. We utilized a temperature sensitive allele of Arabidopsis thaliana SCD1 (stomatal cytokinesis defective1) that encodes a RAB-guanine nucleotide exchange factor. Auxin transport, lateral root initiation, asymmetric auxin-induced gene expression after gravitropic reorientation, and differential gravitropic growth were reduced in the roots of the scd1-1 mutant relative to wild type at the restrictive temperature of 25°C, but not at the permissive temperature of 18°C. In scd1-1 at 25°C, PIN1- and PIN2-GFP accumulated in endomembrane bodies. Transition of seedlings from 18 to 25°C for as little as 20 min resulted in the accumulation of PIN2-GFP in endomembranes, while gravitropism and root developmental defects were not detected until hours after transition to the non-permissive temperature. The endomembrane compartments that accumulated PIN2-GFP in scd1-1 exhibited FM4-64 signal colocalized with ARA7 and ARA6 fluorescent marker proteins, consistent with PIN2 accumulation in the late or multivesicular endosome. These experiments illustrate the power of using a temperature sensitive mutation in the gene encoding SCD1 to study the trafficking of PIN2 between the endosome and the plasma membrane. Using the conditional feature of this mutation, we show that altered trafficking of PIN2 precedes altered auxin transport and defects in gravitropism and lateral root development in this mutant upon transition to the restrictive temperature.

5.
J Bacteriol ; 199(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28559293

RESUMEN

Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation.IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Competencia de la Transformación por ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Metales/metabolismo , Transformación Bacteriana , Dedos de Zinc , Sustitución de Aminoácidos , Secuencia Conservada , Cisteína/genética , Cisteína/metabolismo , Análisis Mutacional de ADN , Unión Proteica
6.
Mol Microbiol ; 105(5): 741-754, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28618091

RESUMEN

Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA-dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA-ComFC duo at the interface between DNA uptake and DNA recombination during transformation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Transformación Bacteriana/fisiología , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Recombinación Homóloga , Proteínas de la Membrana/metabolismo , Unión Proteica , Rec A Recombinasas/metabolismo , Recombinación Genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transformación Bacteriana/genética
7.
Front Plant Sci ; 6: 1268, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26858730

RESUMEN

As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.

8.
J Exp Bot ; 64(16): 4923-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24078672

RESUMEN

It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.


Asunto(s)
Dianthus/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/genética , Dianthus/crecimiento & desarrollo , Dianthus/metabolismo , Etilenos/biosíntesis , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
9.
Plant Cell Environ ; 30(5): 654-61, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17407542

RESUMEN

Emission of hydrocarbons by trees has a crucial role in the oxidizing potential of the atmosphere. In particular, isoprene oxidation leads to the formation of tropospheric ozone and other secondary pollutants. It is expected that changes in the composition of the atmosphere will influence the emission rate of isoprene, which may in turn feedback on the accumulation of pollutants and greenhouse gases. We investigated the isoprene synthase (ISPS) gene expression and the ISPS protein levels in aspen trees exposed to elevated ozone (O(3)) and/or elevated carbon dioxide (CO(2)) in field-grown trees at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site. Elevated O(3) reduced ISPS mRNA and the amount of ISPS protein in aspen leaves, whereas elevated CO(2) had no significant effect. Aspen clones with different O(3) sensitivity showed different levels of inhibition under elevated O(3) conditions. The drop in ISPS protein levels induced a drop in the isoprene emission rate under elevated O(3). However, the data indicated that other mechanisms also contributed to the observed strong inhibition of isoprene emission under elevated O(3).


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Dióxido de Carbono/fisiología , Hemiterpenos/metabolismo , Ozono , Hojas de la Planta/metabolismo , Populus/enzimología , Atmósfera , Butadienos , Regulación de la Expresión Génica de las Plantas , Pentanos , Populus/fisiología , ARN Mensajero/metabolismo
10.
Plant Physiol ; 137(2): 700-12, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15653811

RESUMEN

Isoprene synthase converts dimethylallyl diphosphate, derived from the methylerythritol 4-phosphate (MEP) pathway, to isoprene. Isoprene is made by some plants in substantial amounts, which affects atmospheric chemistry, while other plants make no isoprene. As part of our long-term study of isoprene synthesis, the genetics of the isoprene biosynthetic pathway of the isoprene emitter, kudzu (Pueraria montana), was compared with similar genes in Arabidopsis (Arabidopsis thaliana), which does not make isoprene. The MEP pathway genes in kudzu were similar to the corresponding Arabidopsis genes. Isoprene synthase genes of kudzu and aspen (Populus tremuloides) were cloned to compare their divergence with the divergence seen in MEP pathway genes. Phylogenetic analysis of the terpene synthase gene family indicated that isoprene synthases are either within the monoterpene synthase clade or sister to it. In Arabidopsis, the gene most similar to isoprene synthase is a myrcene/ocimene (acyclic monoterpenes) synthase. Two phenylalanine residues found exclusively in isoprene synthases make the active site smaller than other terpene synthase enzymes, possibly conferring specificity for the five-carbon substrate rather than precursors of the larger isoprenoids. Expression of the kudzu isoprene synthase gene in Arabidopsis caused Arabidopsis to emit isoprene, indicating that whether or not a plant emits isoprene depends on whether or not it has a terpene synthase capable of using dimethylallyl diphosphate.


Asunto(s)
Transferasas Alquil y Aril/genética , Eritritol/análogos & derivados , Hemiterpenos/biosíntesis , Pueraria/enzimología , Pueraria/genética , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Sitios de Unión , Butadienos , Mapeo Cromosómico , Eritritol/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Pentanos , Fenotipo , Filogenia , Populus/enzimología , Homología de Secuencia de Aminoácido , Fosfatos de Azúcar/metabolismo
11.
Plant Cell ; 16(6): 1589-603, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15155878

RESUMEN

Spatial and temporal control of cell wall deposition plays a unique and critical role during growth and development in plants. To characterize membrane trafficking pathways involved in these processes, we have examined the function of a plant Rab GTPase, RabA4b, during polarized expansion in developing root hair cells. Whereas a small fraction of RabA4b cofractionated with Golgi membrane marker proteins, the majority of this protein labeled a unique membrane compartment that did not cofractionate with the previously characterized trans-Golgi network syntaxin proteins SYP41 and SYP51. An enhanced yellow fluorescent protein (EYFP)-RabA4b fusion protein specifically localizes to the tips of growing root hair cells in Arabidopsis thaliana. Tip-localized EYFP-RabA4b disappears in mature root hair cells that have stopped expanding, and polar localization of the EYFP-RabA4b is disrupted by latrunculin B treatment. Loss of tip localization of EYFP-RabA4b was correlated with inhibition of expansion; upon washout of the inhibitor, root hair expansion recovered only after tip localization of the EYFP-RabA4b compartments was reestablished. Furthermore, in mutants with defective root hair morphology, EYFP-RabA4b was improperly localized or was absent from the tips of root hair cells. We propose that RabA4b regulates membrane trafficking through a compartment involved in the polarized secretion of cell wall components in plant cells.


Asunto(s)
Arabidopsis/citología , Arabidopsis/enzimología , Polaridad Celular , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Membranas Intracelulares/metabolismo , Microtúbulos/metabolismo , Mutación/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transporte de Proteínas
12.
Development ; 130(17): 4011-24, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12874123

RESUMEN

In the leaf epidermis, guard mother cells undergo a stereotyped symmetric division to form the guard cells of stomata. We have identified a temperature-sensitive Arabidopsis mutant, stomatal cytokinesis-defective 1-1 (scd1-1), which affects this specialized division. At the non-permissive temperature, 22 degrees C, defective scd1-1 guard cells are binucleate, and the formation of their ventral cell walls is incomplete. Cytokinesis was also disrupted in other types of epidermal cells such as pavement cells. Further phenotypic analysis of scd1-1 indicated a role for SCD1 in seedling growth, root elongation and flower morphogenesis. More severe scd1 T-DNA insertion alleles (scd1-2 and scd1-3) markedly affect polar cell expansion, most notably in trichomes and root hairs. SCD1 is a unique gene in Arabidopsis that encodes a protein related to animal proteins that regulate intracellular protein transport and/or mitogen-activated protein kinase signaling pathways. Consistent with a role for SCD1 in membrane trafficking, secretory vesicles were found to accumulate in cytokinesis-defective scd1 cells. In addition the scd1 mutant phenotype was enhanced by low doses of inhibitors of cell plate consolidation and vesicle secretion. We propose that SCD1 functions in polarized vesicle trafficking during plant cytokinesis and cell expansion.


Asunto(s)
Arabidopsis/genética , División Celular/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Arabidopsis/crecimiento & desarrollo , Clonación Molecular , Microscopía Electrónica , Mutación , Hojas de la Planta/ultraestructura , Proteínas de Plantas/fisiología , Temperatura
13.
Traffic ; 3(9): 621-9, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12191014

RESUMEN

Plant morphogenesis is regulated by cell division and expansion. Cytokinesis, the final stage of cell division, culminates in the construction of the cell plate, a unique cytokinetic membranous organelle that is assembled across the inside of the dividing cell. Both during cell-plate formation and cell expansion, the secretory pathway is highly active and is polarized toward the plane of division or toward the plasma membrane, respectively. In this review, we discuss results from recent genetic and biochemical research directed toward understanding the molecular events occurring during cytokinesis and cell expansion, including data supporting the idea that during cytokinesis one or more exocytic pathways are polarized toward the division plane. We will also highlight recent evidence for the roles of secretory vesicle transport and cytoskeletal machinery in cell-plate membrane trafficking and fusion.


Asunto(s)
Ciclo Celular , Células Vegetales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía Electrónica , Plantas/metabolismo , Plantas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...