Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Rev Mol Med ; 26: e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563164

RESUMEN

Glioblastoma IDH wild type (GBM) is a very aggressive brain tumour, characterised by an infiltrative growth pattern and by a prominent neoangiogenesis. Its prognosis is unfortunately dismal, and the median overall survival of GBM patients is short (15 months). Clinical management is based on bulk tumour removal and standard chemoradiation with the alkylating drug temozolomide, but the tumour invariably recurs leading to patient's death. Clinical options for GBM patients remained unaltered for almost two decades until the encouraging results obtained by the phase II REGOMA trial allowed the introduction of the multikinase inhibitor regorafenib as a preferred regimen in relapsed GBM treatment by the National Comprehensive Cancer Network (NCCN) 2020 Guideline. Regorafenib, a sorafenib derivative, targets kinases associated with angiogenesis (VEGFR 1-3), as well as oncogenesis (c-KIT, RET, FGFR) and stromal kinases (FGFR, PDGFR-b). It was already approved for metastatic colorectal cancers and hepatocellular carcinomas. The aim of the present review is to focus on both the molecular and clinical knowledge collected in these first three years of regorafenib use in GBM.


Asunto(s)
Antineoplásicos , Glioblastoma , Neoplasias Hepáticas , Compuestos de Fenilurea , Piridinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Resultado del Tratamiento , Neoplasias Hepáticas/tratamiento farmacológico
2.
Expert Rev Mol Med ; 25: e10, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919343

RESUMEN

Glioblastoma (GBM) is the most frequent adult malignant brain tumour and despite different therapeutic efforts, the median overall survival still ranges from 14 to 18 months. Thus, new therapeutic strategies are urgently needed. However, the identification of cancer-specific targets is particularly challenging in GBM, due to the high heterogeneity of this tumour in terms of histopathological, molecular, genetic and epigenetic features. Telomerase reactivation is a hallmark of malignant glioma. An activating mutation of the hTERT gene, encoding for the active subunit of telomerase, is one of the molecular criteria to establish a diagnosis of GBM, IDH-wildtype, in the 2021 WHO classification of central nervous system tumours. Telomerase inhibition therefore represents, at least theoretically, a promising strategy for GBM therapy: pharmacological compounds, as well as direct gene expression modulation therapies, have been successfully employed in in vitro and in vivo settings. Unfortunately, the clinical applications of telomerase inhibition in GBM are currently scarce. The aim of the present systematic review is to provide an up-to-date report on the studies investigating telomerase inhibition as a therapeutic strategy for malignant glioma in order to foster the future translational and clinical research on this topic.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Telomerasa , Adulto , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Glioblastoma/terapia , Terapia Genética
3.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551679

RESUMEN

Glioblastoma (GBM), the most malignant primary brain tumor in adults. Although not frequent, it has a relevant social impact because the peak incidence coincides with the age of professional maturity. A number of novel treatments have been proposed, yet clinical trials have been disappointing. Recently, a phase II clinical trial (REGOMA) demonstrated that the multikinase inhibitor regorafenib significantly increased the median overall survival (OS) of GBM patients when compared to lomustine-treated patients. On this basis, the National Comprehensive Cancer Network (NCCN) 2020 Guidelines included regorafenib as a preferred regimen in relapsed GBM treatment. Despite the use in GBM patients' therapy, little is known about the molecular mechanisms governing regorafenib effectiveness on the GBM tumor. Here we report an in vitro characterization of GBM tumor cells' response to regorafenib, performed both on cell lines and on patient-derived glioma stem cells (GSCs). Overall, regorafenib significantly reduced cell growth of 2D tumor cell cultures and of 3D tumor spheroids. Strikingly, this effect was accompanied by transcriptional regulation of epithelial to mesenchymal transition (EMT) genes and by an increased ability of surviving tumor cells to invade the surrounding matrix. Taken together, our data suggest that regorafenib limits cell growth, however, it might induce an invasive phenotype.

4.
J Colloid Interface Sci ; 627: 283-298, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35853406

RESUMEN

HYPOTHESIS: The positive charge on liposome surface is known to promote the crossing of the Blood brain barrier (BBB). However, when diastereomeric cationic gemini amphiphiles are among lipid membrane components, also the stereochemistry may affect the permeability of the vesicle across the BBB. EXPERIMENTS: Liposomes featuring cationic diasteromeric gemini amphiphiles were formulated, characterized, and their interaction with cell culture models of BBB investigated. FINDINGS: Liposomes featuring the gemini amphiphiles were internalized in a monolayer of brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPSC) through an energy dependent transport, internalization involving both clathrin- and caveolae-mediated endocytosis. On the same formulations, the permeability was also evaluated across a human derived in vitro BBB transport model. The permeability of liposomes featuring the gemini amphiphiles was significantly higher compared to that of neutral liposomes (DPPC/Cholesterol), that were not able to cross BBB. Most importantly, the permeability was influenced by the stereochemistry of the gemini and pegylation of these formulations did not result in a drastic reduction of the crossing ability. The in vitro iPSC-derived BBB models used in this work represent an important advancement in the drug discovery research of novel brain delivery strategies and therapeutics for central nervous system diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Liposomas , Transporte Biológico , Barrera Hematoencefálica , Cationes , Colesterol , Clatrina , Células Endoteliales , Humanos , Liposomas/química
5.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35740509

RESUMEN

5-aminolevulinic acid (5-ALA)-induced PpIX fluorescence is used by neurosurgeons to identify the tumor cells of high-grade gliomas during operation. However, the issue of whether 5-ALA-induced PpIX fluorescence consistently stains all the tumor cells is still debated. Here, we assessed the cytoplasmatic signal of 5-ALA by fluorescence microscopy in a series of human gliomas. As tumor markers, we used antibodies against collapsin response-mediated protein 5 (CRMP5), alpha thalassemia/mental retardation syndrome X-linked (ATRX), and anti-isocitrate dehydrogenase 1 (IDH1). In grade III-IV gliomas, the signal induced by 5-ALA was detected in 32.7-75.5 percent of CRMP5-expressing tumor cells. In low-grade gliomas (WHO grade II), the CRMP5-expressing tumor cells did not fluoresce following 5-ALA. Immunofluorescence with antibodies that stain various components of the blood-brain barrier (BBB) suggested that 5-ALA does not cross the un-breached BBB, in spite of its small dimension. To conclude, 5-ALA-induced PpIX fluorescence has an established role in high-grade glioma surgery, but it has limited usefulness in surgery for low-grade glioma, especially when the BBB is preserved.

6.
Cancers (Basel) ; 13(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34771661

RESUMEN

ATM is one of the principal players of the DNA damage response. This protein exerts its role in DNA repair during cell cycle replication, oxidative stress, and DNA damage from endogenous events or exogenous agents. When is activated, ATM phosphorylates multiple substrates that participate in DNA repair, through its phosphoinositide 3-kinase like domain at the 3'end of the protein. The absence of ATM is the cause of a rare autosomal recessive disorder called Ataxia Telangiectasia characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility, and radiation sensitivity. There is a correlation between the severity of the phenotype and the mutations, depending on the residual activity of the protein. The analysis of patient mutations and mouse models revealed that the presence of inactive ATM, named ATM kinase-dead, is more cancer prone and lethal than its absence. ATM mutations fall into the whole gene sequence, and it is very difficult to predict the resulting effects, except for some frequent mutations. In this regard, is necessary to characterize the mutated protein to assess if it is stable and maintains some residual kinase activity. Moreover, the whole-genome sequencing of cancer patients with somatic or germline mutations has highlighted a high percentage of ATM mutations in the phosphoinositide 3-kinase domain, mostly in cancer cells resistant to classical therapy. The relevant differences between the complete absence of ATM and the presence of the inactive form in in vitro and in vivo models need to be explored in more detail to predict cancer predisposition of A-T patients and to discover new therapies for ATM-associated cancer cells. In this review, we summarize the multiple discoveries from humans and mouse models on ATM mutations, focusing into the inactive versus null ATM.

7.
Biomed Res Int ; 2021: 8891045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748283

RESUMEN

The cranial window (CW) technique provides a simple and low-cost method to assess tumor angiogenesis in the brain. The CW combined with histology using selective markers for tumor and endothelial cells can allow a sensitive monitoring of novel antiangiogenesis therapies in preclinical models. The CW was established in cyclosporine immunosuppressed rats that were stereotactically grafted with fluorescent U87MG glioblastoma cells. One to 3 weeks after grafting, brain vasculature was visualized in vivo and assessed by immunofluorescence microscopy using antibodies against endothelial and smooth-muscle cells and blood brain barrier. At 1-2 weeks after grafting, the CW reliably detected the hypertrophy of venous-venous anastomoses and cortical veins. These structures increased highly significantly their pregrafting diameter. Arterialized veins and hemorrhages were seen by three weeks after grafting. Immunofluorescence microscopy showed significant branching and dilation of microvessels, particularly those surrounded by tumor cells. Mechanistically, these changes lead to loss of vascular resistance, increased venous outflow, and opening of venous-venous anastomoses on the cortical surface. Data from the present study, namely, the hypertrophy of cortical venous-venous anastomoses, microvessel branching, and dilation of the microvessels surrounded by tumor cells, indicate the power of this in vivo model for the sensitive monitoring of early tumor angiogenesis.


Asunto(s)
Bioensayo , Neoplasias Encefálicas , Encéfalo , Venas Cerebrales , Glioblastoma , Neoplasias Experimentales , Neovascularización Patológica , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Venas Cerebrales/metabolismo , Venas Cerebrales/patología , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratas , Ratas Wistar
8.
Cancers (Basel) ; 13(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513872

RESUMEN

Cellular senescence participates to fundamental processes like tissue remodeling in embryo development, wound healing and inhibition of preneoplastic cell growth. Most senescent cells display common hallmarks, among which the most characteristic is a permanent (or long lasting) arrest of cell division. However, upon senescence, different cell types acquire distinct phenotypes, which also depend on the specific inducing stimuli. Senescent cells are metabolically active and secrete a collection of growth factors, cytokines, proteases, and matrix-remodeling proteins collectively defined as senescence-associated secretory phenotype, SASP. Through SASP, senescent cells modify their microenvironment and engage in a dynamic dialog with neighbor cells. Senescence of neoplastic cells, at least temporarily, reduces tumor expansion, but SASP of senescent cancer cells as well as SASP of senescent stromal cells in the tumor microenvironment may promote the growth of more aggressive cancer subclones. Here, we will review recent data on the mechanisms and the consequences of cancer-therapy induced senescence, enlightening the potentiality and the risk of senescence inducing treatments.

9.
Aging Clin Exp Res ; 33(7): 1993-2001, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31673993

RESUMEN

Endothelial cells senescence is a physiological process affecting vascular integrity. It can contribute to heart and arterial stiffening and remodeling, impaired angiogenesis, defective vascular repair, and with an increasing prevalence of atherosclerosis. Drugs used as antineoplastic therapies, targeting tumor as well as endothelial cells, can also trigger endothelial cells senescence. We demonstrated that a short pulse of axitinib, a specific inhibitor of vascular endothelial growth factor receptors, induces cell senescence of endothelial cells. Here, we performed a high-throughput gene expression analysis to characterize the response of proliferating versus senescent endothelial cells to hypoxia, the main trigger of neo-angiogenetic phenomena in tumors. We compared the response to hypoxia of replicative senescent cells, with that of axitinib or of DNA damage-induced senescence. Overall, we enlightened common and specific responses to different senescence inducers and changes in the Senescent Associated Secretory Phenotype.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Senescencia Celular , Perfilación de la Expresión Génica , Humanos , Hipoxia
10.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098270

RESUMEN

Axitinib is an orally available inhibitor of tyrosine kinases, with high specificity for vascular endothelial growth factor receptors (VEGFRs) 1, 2, and 3. It is approved for the treatment of advanced renal cell carcinoma and is in phase II clinical trials for recurrent glioblastoma (GBM). GBM is a brain tumor peculiar in its ability to induce neoangiogenesis. Since both GBM tumor cells and endothelial cells of tumor vasculature express VEGFRs, Axitinib exerts its inhibitory action on both tumor and endothelial cells. We and others previously demonstrated that Axitinib triggers cellular senescence. In particular, Axitinib-dependent senescence of HUVECs (human umbilical vein endothelial cells) is accompanied by intracellular reactive oxygen species(ROS) increase and early ataxia telangiectasia mutated(ATM) activation. Here we wondered if the presence of glioblastoma tumor cells could affect the HUVEC senescence upon Axitinib exposure. To address this issue, we cocultured HUVECs together with GBM tumor cells in transwell plates. HUVEC senescence did not result in being affected by GBM cells, neither in terms of ß galactosidase activity nor of proliferation index or ATM phosphorylation. Conversely, Axitinib modulation of HUVEC gene expression was altered by cocultured GBM cells. These data demonstrate that the GBM secretome modifies HUVECs' transcriptomic profile upon Axitinib exposure, but does not prevent drug-induced senescence.


Asunto(s)
Axitinib/farmacología , Senescencia Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Glioblastoma/patología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Fosforilación/efectos de los fármacos
11.
Cancers (Basel) ; 12(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861603

RESUMEN

The question whether perivascular glioma cells invading the brain far from the tumor bulk may disrupt the blood-brain barrier (BBB) represents a crucial issue because under this condition tumor cells would be no more protected from the reach of chemotherapeutic drugs. A recent in vivo study that used human xenolines, demonstrated that single glioma cells migrating away from the tumor bulk are sufficient to breach the BBB. Here, we used brain xenografts of patient-derived glioma stem-like cells (GSCs) to show by immunostaining that in spite of massive perivascular invasion, BBB integrity was preserved in the majority of vessels located outside the tumor bulk. Interestingly, the tumor cells that invaded the brain for the longest distances traveled along vessels with retained BBB integrity. In surgical specimens of malignant glioma, the area of brain invasion showed several vessels with preserved BBB that were surrounded by tumor cells. On transmission electron microscopy, the cell inter-junctions and basal lamina of the brain endothelium were preserved even in conditions in which the tumor cells lay adjacently to blood vessels. In conclusion, BBB integrity associates with extensive perivascular invasion of glioma cells.

12.
Oncogene ; 38(27): 5413-5424, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30967634

RESUMEN

Inhibitors of Vascular Endothelial Growth Factor target both tumor vasculature and cancer cells that have hijacked VEGF Receptors (VEGFRs) signaling for tumor growth-promoting activities. It is important to get precise insight in the specificity of cell responses to these antiangiogenic drugs to maximize their efficiency and minimize off-target systemic toxicity. Here we report that Axitinib, an inhibitor of VEGFRs currently in use as a second line treatment for advanced renal cell carcinoma, promotes senescence of human endothelial cells in vitro. A one-hour pulse of Axitinib is sufficient for triggering cell senescence. Mechanistically, this requires oxidative stress-dependent activation of the Ataxia Telangiectasia Mutated (ATM) kinase. Axitinib-mediated senescence promoting action is prevented by short-term treatment with antioxidants or ATM inhibitors, which conversely fail to prevent senescence induced by the DNA-damaging drug doxorubicin. Coherently, induction of oxidative stress-related genes distinguishes the response of endothelial cells to Axitinib from that to doxorubicin. Importantly, an Axitinib pulse causes cell senescence in glioblastoma cells. However, neither antioxidants nor ATM inhibitors can reverse this phenotype. Thus, antioxidants may selectively protect endothelial cells from Axitinib by decreasing systemic toxicity and maintaining a functional vascularization necessary for efficient delivery of chemotherapeutic drugs within the tumor mass.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Axitinib/farmacología , Senescencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antioxidantes/farmacología , Células Endoteliales/metabolismo , Activación Enzimática , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/prevención & control , Inhibidores de Proteínas Quinasas/administración & dosificación
13.
Int J Cancer ; 144(6): 1331-1344, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30414187

RESUMEN

Bevacizumab, a VEGF-targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t-test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t-test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over-expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient-derived glioma stem-like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab-treated rats. Our study indicates that bevacizumab-induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Bevacizumab/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Endotelio/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Adulto , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Bevacizumab/uso terapéutico , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Células Endoteliales , Endotelio/citología , Endotelio/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Masculino , Proteínas de Neoplasias/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Desnudas , Receptores de Superficie Celular/genética , Análisis de Supervivencia , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Stem Cell Res Ther ; 8(1): 53, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28279193

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) represent an attractive tool for cell-based cancer therapy mainly because of their ability to migrate to tumors and to release bioactive molecules. However, the impact of MSCs on tumor growth has not been fully established. We previously demonstrated that murine MSCs show a strong tropism towards glioblastoma (GBM) brain xenografts and that these cells are able to uptake and release the chemotherapeutic drug paclitaxel (PTX), maintaining their tropism towards the tumor. Here, we address the therapy-relevant issue of using MSCs from human donors (hMSCs) for local or systemic administration in orthotopic GBM models, including xenografts of patient-derived glioma stem cells (GSCs). METHODS: U87MG or GSC1 cells expressing the green fluorescent protein (GFP) were grafted onto the striatum of immunosuppressed rats. Adipose hMSCs (Ad-hMSCs), fluorescently labeled with the mCherry protein, were inoculated adjacent to or into the tumor. In rats bearing U87MG xenografts, systemic injections of Ad-hMSCs or bone marrow (BM)-hMSCs were done via the femoral vein or carotid artery. In each experiment, either PTX-loaded or unloaded hMSCs were used. To characterize the effects of hMSCs on tumor growth, we analyzed survival, tumor volume, tumor cell proliferation, and microvascular density. RESULTS: Overall, the AD-hMSCs showed remarkable tropism towards the tumor. Intracerebral injection of Ad-hMSCs significantly improved the survival of rats with U87MG xenografts. This effect was associated with a reduction in tumor growth, tumor cell proliferation, and microvascular density. In GSC1 xenografts, intratumoral injection of Ad-hMSCs depleted the tumor cell population and induced migration of resident microglial cells. Overall, PTX loading did not significantly enhance the antitumor potential of hMSCs. Systemically injected Ad- and BM-hMSCs homed to tumor xenografts. The efficiency of hMSC homing ranged between 0.02 and 0.5% of the injected cells, depending both on the route of cell injection and on the source from which the hMSCs were derived. Importantly, systemically injected PTX-loaded hMSCs that homed to the xenograft induced cytotoxic damage to the surrounding tumor cells. CONCLUSIONS: hMSCs have a therapeutic potential in GBM brain xenografts which is also expressed against the GSC population. In this context, PTX loading of hMSCs seems to play a minor role.


Asunto(s)
Proliferación Celular , Glioblastoma/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Línea Celular Tumoral , Terapia Combinada , Glioblastoma/patología , Humanos , Ratones , Paclitaxel/administración & dosificación , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Oncotarget ; 7(22): 33257-71, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27119353

RESUMEN

The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/farmacología , Hipoxia Tumoral , Microambiente Tumoral , Sitios de Unión , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
16.
Expert Opin Drug Deliv ; 13(6): 789-98, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26986001

RESUMEN

OBJECTIVE: Gingival tissue is composed of cell types that contribute to the body's defense against many agents in oral environment, wound healing and tissue regeneration. Thanks to their easy and scarcely invasive withdrawal procedure, interdental papilla provide a good source of mesenchymal stromal cells (GinPa-MSCs). We isolated GinPa-MSCs and verified their ability to uptake/release the anticancer agent Paclitaxel (PTX). METHODS: In vitro expanded GinPa-MSCs were characterized for CD markers by FACS, tested for differentiation ability and analyzed by TEM. Their ability to uptake/release PTX was assessed according to a standardized procedure. RESULTS: The CD expression and chondro-adipo-osteo differentiation ability confirmed the mesenchymal feature of GinPa-MSCs. Surprisingly, 28% of GinPa-MSCs expressed CD14 marker and had an impressive pinocytotic activity. GinPa-MSCs were able to take up and release a sufficient amount of PTX to demonstrate effective in vitro activity against pancreatic carcinoma cells, suggesting that the drug was not inactivated. CONCLUSIONS: The procedure to obtain MSCs from interdental papilla is less invasive than that used for both bone marrow and adipose tissue, GinPa-MSCs are easy to expand and can be efficiently loaded with PTX. Taken together these qualities suggest that GinPa-MSCs may prove to be a good tool for cell-mediated drug delivery in cancer, particularly if related to stomatognathic system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Encía/citología , Células Madre Mesenquimatosas/citología , Paclitaxel/administración & dosificación , Tejido Adiposo/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos
17.
Sci Rep ; 5: 15494, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563484

RESUMEN

The c-Myc protein is dysregulated in many human cancers and its function has not been fully elucitated yet. The c-Myc inhibitor Omomyc displays potent anticancer properties in animal models. It perturbs the c-Myc protein network, impairs c-Myc binding to the E-boxes, retaining transrepressive properties and inducing histone deacetylation. Here we have employed Omomyc to further analyse c-Myc activity at the epigenetic level. We show that both Myc and Omomyc stimulate histone H4 symmetric dimethylation of arginine (R) 3 (H4R3me2s), in human glioblastoma and HEK293T cells. Consistently, both associated with protein Arginine Methyltransferase 5 (PRMT5)--the catalyst of the reaction--and its co-factor Methylosome Protein 50 (MEP50). Confocal experiments showed that Omomyc co-localized with c-Myc, PRMT5 and H4R3me2s-enriched chromatin domains. Finally, interfering with PRMT5 activity impaired target gene activation by Myc whereas it restrained Omomyc-dependent repression. The identification of a histone-modifying complex associated with Omomyc represents the first demonstration of an active role of this miniprotein in modifying chromatin structure and adds new information regarding its action on c-Myc targets. More importantly, the observation that c-Myc may recruit PRMT5-MEP50, inducing H4R3 symmetric di-methylation, suggests previously unpredictable roles for c-Myc in gene expression regulation and new potential targets for therapy.


Asunto(s)
Histonas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arginina/metabolismo , Western Blotting , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Células HEK293 , Humanos , Metilación , Microscopía Confocal , Fragmentos de Péptidos/genética , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN
18.
Stem Cell Res Ther ; 6: 194, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445228

RESUMEN

INTRODUCTION: The goal of cancer chemotherapy is targeting tumor cells and/or tumor-associated microvessels with the lowest systemic toxicity. Mesenchymal stromal cells (MSCs) are promising vehicles for selective drug delivery due to their peculiar ability to home to pathological tissues. We previously showed that MSCs are able to uptake and subsequently to release the chemotherapeutic compound Paclitaxel (PTX) and to impair the growth of subcutaneous glioblastoma multiforme (GBM) xenografts. Here we used an orthotopic GBM model 1) to assess whether PTX-loaded MSCs (PTX-MSCs) retain a tropism towards the tumor cells in the brain context, and 2) to characterize the cytotoxic damage induced by MSCs-driven PTX release in the tumor microenvironment. METHODS: U87MG GBM cells were fluorescently labeled with the mCherry protein and grafted onto the brain of immunosuppressed rats. In adjacent brain regions, we injected green fluorescent protein-expressing murine MSCs, either loaded with PTX or unloaded. After 1 week survival, the xenografted brain was assessed by confocal microscopy for PTX-induced cell damage. RESULTS: Overall, MSCs showed remarkable tropism towards the tumor. In rats grafted with PTX-MSCs, the nuclei of U87MG cells showed changes that are typically induced by PTX, including multi-spindle mitoses, centrosome number alterations, and nuclear fragmentation. Multi-spindle mitoses resulted in multinucleated cells that were significantly higher in tumors co-grafted with PTX-MSCs than in controls. Nuclear changes did not occur in astrocytes and neurons surrounding the tumor. CONCLUSIONS: MSCs appear particularly suited for anti-neoplastic drug delivery in the brain since PTX-specific damage of GBM cells can be achieved avoiding side effects to the normal tissue.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Trasplante de Células Madre Mesenquimatosas , Paclitaxel/administración & dosificación , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/toxicidad , Línea Celular Tumoral , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Paclitaxel/uso terapéutico , Paclitaxel/toxicidad , Ratas , Ratas Wistar
19.
Stem Cell Res Ther ; 5(3): 63, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24887516

RESUMEN

INTRODUCTION: Human adipose-derived stromal cells (hASCs), due to their relative feasibility of isolation and ability to secrete large amounts of angiogenic factors, are being evaluated for regenerative medicine. However, their limited culture life span may represent an obstacle for both preclinical investigation and therapeutic use. To overcome this problem, hASCs immortalization was performed in order to obtain cells with in vitro prolonged life span but still maintain their mesenchymal marker expression and ability to secrete angiogenic factors. METHODS: hASCs were transduced with the human telomerase reverse transcriptase (hTERT) gene alone or in combination with either SV-40 or HPV E6/E7 genes. Mesenchymal marker expression on immortalized hASCs lines was confirmed by flow cytometry (FC), differentiation potential was evaluated by immunocytochemistry and ELISA kits were used for evaluation of angiogenic factors. Green fluorescent protein (GFP) gene transduction was used to obtain fluorescent cells. RESULTS: We found that hTERT alone failed to immortalize hASCs (hASCs-T), while hTERT/SV40 (hASCs-TS) or hTERT/HPV E6/E7 (hASCs-TE) co-transductions successfully immortalized cells. Both hASCs-TS and hASCs-TE were cultured for up to one year with a population doubling level (PDL) up to 100. Comparative studies between parental not transduced (hASCs-M) and immortalized cell lines showed that both hASCs-TS and hASCs-TE maintained a mesenchymal phenotypic profile, whereas differentiation properties were reduced particularly in hASCs-TS. Interestingly, hASCs-TS and hASCs-TE showed a capability to secrete significant amount of HGF and VEGF. Furthermore, hASCs-TS and hASCs-TE did not show tumorigenic properties in vitro although some chromosomal aberrations were detected. Finally, hASCs-TS and hASCs-TE lines were stably fluorescent upon transduction with the GFP gene. CONCLUSIONS: Here we demonstrated, for the first time, that hASCs, upon immortalization, maintain a strong capacity to secrete potent angiogenic molecules. By combining hASCs immortalization and their paracrine characteristics, we have developed a "hybridoma-like model" of hASCs that could have potential applications for discovering and producing molecules to use in regenerative medicine (process scale-up).


Asunto(s)
Tejido Adiposo/citología , Técnicas de Cultivo de Célula/métodos , Línea Celular/citología , Línea Celular/metabolismo , Células Madre Mesenquimatosas/citología , Tejido Adiposo/metabolismo , Diferenciación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Factor de Crecimiento de Hepatocito/biosíntesis , Humanos , Inmunohistoquímica , Inmunofenotipificación , Células Madre Mesenquimatosas/metabolismo , Telomerasa/genética , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis
20.
Br J Haematol ; 160(6): 766-78, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23293837

RESUMEN

Current leukaemia therapy focuses on increasing chemotherapy efficacy. Mesenchymal stromal cells (MSCs) have been proposed for carrying and delivery drugs to improve killing of cancer cells. We have shown that MSCs loaded with Paclitaxel (PTX) acquire a potent anti-tumour activity. We investigated the effect of human MSCs (hMSCs) and mouse SR4987 loaded with PTX (hMSCsPTX and SR4987PTX) on MOLT-4 and L1210, two leukaemia cell (LCs) lines of human and mouse origin, respectively. SR4987PTX and hMSCsPTX showed strong anti-LC activity. hMSCsPTX, co-injected with MOLT-4 cells or intra-tumour injected into established subcutaneous MOLT-4 nodules, strongly inhibited growth and angiogenesis. In BDF1-mice-bearing L1210, the intraperitoneal administration of SR4987PTX doubled mouse survival time. In vitro, both hMSCs and hMSCsPTX released chemotactic factors, bound and formed rosettes with LCs. In ultrastructural analysis of rosettes, hMSCsPTX showed no morphological alterations while the attached LCs were apoptotic and necrotic. hMSCs and hMSCsPTX released molecules that reduced LC adhesion to microvascular endothelium (hMECs) and down-modulated ICAM1 and VCAM1 on hMECs. Priming hMSCs with PTX is a simple procedure that does not require any genetic cell manipulation. Once the effectiveness of hMSCsPTX on established cancers in mice is proven, this procedure could be proposed for leukaemia therapy in humans.


Asunto(s)
Comunicación Celular/fisiología , Leucemia/patología , Leucemia/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Paclitaxel/farmacología , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Leucemia/tratamiento farmacológico , Leucemia/cirugía , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...