Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673746

RESUMEN

Neuroinflammation is associated with several neurological disorders including temporal lobe epilepsy. Seizures themselves can induce neuroinflammation. In an in vivo model of epilepsy, the supplementation of brain-derived neurotropic factor (BDNF) and fibroblast growth factor-2 (FGF-2) using a Herpes-based vector reduced epileptogenesis-associated neuroinflammation. The aim of this study was to test whether the attenuation of the neuroinflammation obtained in vivo with BDNF and FGF-2 was direct or secondary to other effects, for example, the reduction in the severity and frequency of spontaneous recurrent seizures. An in vitro model of neuroinflammation induced by lipopolysaccharide (LPS, 100 ng/mL) in a mouse primary mixed glial culture was used. The releases of cytokines and NO were analyzed via ELISA and Griess assay, respectively. The effects of LPS and neurotrophic factors on cell viability were determined by performing an MTT assay. BDNF and FGF-2 were tested alone and co-administered. LPS induced a significant increase in pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and NO. BDNF, FGF-2, and their co-administration did not counteract these LPS effects. Our study suggests that the anti-inflammatory effect of BDNF and FGF-2 in vivo in the epilepsy model was indirect and likely due to a reduction in seizure frequency and severity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Citocinas , Factor 2 de Crecimiento de Fibroblastos , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Animales , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Células Cultivadas , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Neuroglía/metabolismo , Neuroglía/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Brain Commun ; 5(3): fcad170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288314

RESUMEN

ß-Amyloid is one of the main pathological hallmarks of Alzheimer's disease and plays a major role in synaptic dysfunction. It has been demonstrated that ß-amyloid can elicit aberrant excitatory activity in cortical-hippocampal networks, which is associated with behavioural abnormalities. However, the mechanism of the spreading of ß-amyloid action within a specific circuitry has not been elucidated yet. We have previously demonstrated that the motion of microglia-derived large extracellular vesicles carrying ß-amyloid, at the neuronal surface, is crucial for the initiation and propagation of synaptic dysfunction along the entorhinal-hippocampal circuit. Here, using chronic EEG recordings, we show that a single injection of extracellular vesicles carrying ß-amyloid into the mouse entorhinal cortex could trigger alterations in the cortical and hippocampal activity that are reminiscent of those found in Alzheimer's disease mouse models and human patients. The development of EEG abnormalities was associated with progressive memory impairment as assessed by an associative (object-place context recognition) and non-associative (object recognition) task. Importantly, when the motility of extracellular vesicles, carrying ß-amyloid, was inhibited, the effect on network stability and memory function was significantly reduced. Our model proposes a new biological mechanism based on the extracellular vesicles-mediated progression of ß-amyloid pathology and offers the opportunity to test pharmacological treatments targeting the early stages of Alzheimer's disease.

3.
Brain ; 145(8): 2849-2868, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35254410

RESUMEN

Synaptic dysfunction is an early mechanism in Alzheimer's disease that involves progressively larger areas of the brain over time. However, how it starts and propagates is unknown. Here we show that amyloid-ß released by microglia in association with large extracellular vesicles (Aß-EVs) alters dendritic spine morphology in vitro, at the site of neuron interaction, and impairs synaptic plasticity both in vitro and in vivo in the entorhinal cortex-dentate gyrus circuitry. One hour after Aß-EV injection into the mouse entorhinal cortex, long-term potentiation was impaired in the entorhinal cortex but not in the dentate gyrus, its main target region, while 24 h later it was also impaired in the dentate gyrus, revealing a spreading of long-term potentiation deficit between the two regions. Similar results were obtained upon injection of extracellular vesicles carrying Aß naturally secreted by CHO7PA2 cells, while neither Aß42 alone nor inflammatory extracellular vesicles devoid of Aß were able to propagate long-term potentiation impairment. Using optical tweezers combined to time-lapse imaging to study Aß-EV-neuron interaction, we show that Aß-EVs move anterogradely at the axon surface and that their motion can be blocked through annexin-V coating. Importantly, when Aß-EV motility was inhibited, no propagation of long-term potentiation deficit occurred along the entorhinal-hippocampal circuit, implicating large extracellular vesicle motion at the neuron surface in the spreading of long-term potentiation impairment. Our data indicate the involvement of large microglial extracellular vesicles in the rise and propagation of early synaptic dysfunction in Alzheimer's disease and suggest a new mechanism controlling the diffusion of large extracellular vesicles and their pathogenic signals in the brain parenchyma, paving the way for novel therapeutic strategies to delay the disease.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Péptidos beta-Amiloides , Animales , Hipocampo , Potenciación a Largo Plazo , Ratones , Microglía
4.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34576308

RESUMEN

Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.


Asunto(s)
Núcleo Celular/metabolismo , Sinapsis/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Transporte Activo de Núcleo Celular , Animales , Humanos , Sinapsis/fisiología , Proteínas tau/química
5.
Eur J Pharmacol ; 901: 174068, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798600

RESUMEN

Innovative therapeutic strategies are highly needed to tackle the major medical needs of epilepsy, like prevention of epilepsy development in at-risk individuals, treatment of severe and drug-resistant forms, control of co-morbidities. The Neural Regeneration Peptide NRP2945 (a peptidomimetic analogue of the human CAPS-2 protein) has been recently found to exert many potentially anti-epileptic effects, for example increased neuronal survival and differentiation. In the present study, we tested the effects of NRP2945 on the development of epilepsy (epileptogenesis) and on chronic, spontaneous seizures, by using the pilocarpine model of temporal lobe epilepsy. We found that NRP2945 exerts a robust anti-epileptogenic effect, reducing the frequency of spontaneous seizures, exerting a significant neuroprotective effect and attenuating anxiety-like behaviors and cognitive impairment. These effects appear to depend on modulation of the epileptogenesis process and not on seizure suppression, because NRP2945 did not reduce frequency or duration of spontaneous seizures when administered to already epileptic animals. These findings may form the basis for a preventive therapy for individuals at-risk of developing epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Conducta Animal/efectos de los fármacos , Convulsivantes/uso terapéutico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/psicología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Pilocarpina , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Convulsiones/etiología
6.
Brain Commun ; 3(1): fcaa130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33758823

RESUMEN

Epilepsy is a serious neurological disorder affecting about 1% of the population worldwide. Epilepsy may arise as a result of acquired brain injury, or as a consequence of genetic predisposition. To date, genome-wide association studies and exome sequencing approaches have provided limited insights into the mechanisms of acquired brain injury. We have previously reported a pro-epileptic gene network, which is conserved across species, encoding inflammatory processes and positively regulated by sestrin3 (SESN3). In this study, we investigated the phenotype of SESN3 knock-out rats in terms of susceptibility to seizures and observed a significant delay in status epilepticus onset in SESN3 knock-out compared to control rats. This finding confirms previous in vitro and in vivo evidence indicating that SESN3 may favour occurrence and/or severity of seizures. We also analysed the phenotype of SESN3 knock-out rats for common comorbidities of epilepsy, i.e., anxiety, depression and cognitive impairment. SESN3 knock-out rats proved less anxious compared to control rats in a selection of behavioural tests. Taken together, the present results suggest that SESN3 may regulate mechanisms involved in the pathogenesis of epilepsy and its comorbidities.

7.
Neurobiol Dis ; 151: 105271, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482355

RESUMEN

Abnormalities in thyroid hormones (TH) availability and/or metabolism have been hypothesized to contribute to Alzheimer's disease (AD) and to be a risk factor for stroke. Recently, 3-iodothyronamine (T1AM), an endogenous amine putatively derived from TH metabolism, gained interest for its ability to promote learning and memory in the mouse. Moreover, T1AM has been demonstrated to rescue the ß-Amyloid dependent LTP impairment in the entorhinal cortex (EC), a brain area crucially involved in learning and memory and early affected during AD. In the present work, we have investigated the effect of T1AM on ischemia-induced EC synaptic dysfunction. In EC brain slices exposed to oxygen-glucose deprivation (OGD), we demonstrated that the acute perfusion of T1AM (5 µM) was capable of preventing ischemia-induced synaptic depression and that this protective effect was mediated by the trace amine-associated receptor 1 (TAAR1). Moreover, we demonstrated that activation of the BDNF-TrkB signalling is required for T1AM action during ischemia. The protective effect of T1AM was more evident when using EC slices from transgenic mutant human APP (mhAPP mice) that are more vulnerable to the effect of OGD. Our results confirm that the TH derivative T1AM can rescue synaptic function after transient ischemia, an effect that was also observed in a Aß-enriched environment.


Asunto(s)
Isquemia Encefálica/patología , Corteza Entorrinal/patología , Receptores Acoplados a Proteínas G/metabolismo , Tironinas/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Isquemia Encefálica/metabolismo , Corteza Entorrinal/efectos de los fármacos , Humanos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Front Med (Lausanne) ; 7: 589409, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344476

RESUMEN

One of the most striking reported symptoms in CoViD-19 is loss of smell and taste. The frequency of these impairments and their specificity as a potential central nervous system function biomarker are of great interest as a diagnostic clue for CoViD-19 infection as opposed to other similar symptomatologic diseases and because of their implication in viral pathogenesis. Here severe CoViD-19 was investigated by comparing self-report vs. testing of smell and taste, thus the objective severity of olfactory impairment and their possible correlation with other symptoms. Because a significant discrepancy between smell and taste testing vs. self-report results (p < 0.001) emerges in our result, we performed a statistical analysis highlighting disagreement among normosmia (p < 0.05), hyposmia, severe hyposmia, and anosmia (p < 0.001) and, in hypogeusia and severe hypogeusia, while no differences are observed in normogeusia and ageusia. Therefore, we analyzed the olfactory threshold by an objective test revealing the distribution of hyposmic (34%), severe hyposmic (48%), and anosmic (13%) patients in severe CoViD-19. In severe CoViD-19 patients, taste is lost in 4.3% of normosmic individuals, 31.9% of hyposmic individuals, 46.8% of severe hyposmic individuals, and 17% of anosmic individuals. Moreover, 95% of 100 CoViD-19 patients objectively tested were affected by smell dysfunction, while 47% were affected by taste dysfunction. Furthermore, analysis by objective testing also highlighted that the severity of smell dysfunction in CoViD-19 subjects did not correlate with age and sex. In conclusion, we report by objective testing that the majority of CoViD-19 patients report severe anosmia, that most of the subjects have olfactory impairment rather than taste impairment, and, finally, that the olfactory impairment correlate with symptom onset and hospitalization (p < 0.05). Patients who exhibit severe olfactory impairment had been hospitalized for about a week from symptom onset; double time has taken place in subjects with normosmia. Our results may be limited by the relatively small number of study participants, but these suggest by objective testing that hyposmia, severe hyposmia, and anosmia may relate directly to infection severity and neurological damage. The smell test assessment could be a potential screening symptom that might contribute to the decision to test suspected cases or guide quarantine instructions, further therapeutic approach, and evaluation of neurological damage.

9.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781522

RESUMEN

Many studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer's disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aß peptide or in the presence of tauopathies. Here, we describe the role of p38 MAPK in the regulation of synaptic plasticity and its implication in an animal model of neurodegeneration. In particular, recent evidence suggests the p38 MAPK α isoform as a potential neurotherapeutic target, and specific inhibitors have been developed and have proven to be effective in ameliorating synaptic and memory deficits in AD mouse models.


Asunto(s)
Sinapsis/enzimología , Sinapsis/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Encéfalo/patología , Humanos , Inflamación/patología , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sinapsis/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
10.
J Neurosci ; 39(11): 2144-2156, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30665947

RESUMEN

Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.


Asunto(s)
Epilepsia/tratamiento farmacológico , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Convulsiones/tratamiento farmacológico , Animales , Encapsulación Celular , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Epilepsia/inducido químicamente , Humanos , Masculino , Pilocarpina/administración & dosificación , Ratas Sprague-Dawley , Convulsiones/inducido químicamente
11.
J Vis Exp ; (141)2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30474642

RESUMEN

Microdialysis is a well-established neuroscience technique that correlates the changes of neurologically active substances diffusing into the brain interstitial space with the behavior and/or with the specific outcome of a pathology (e.g., seizures for epilepsy). When studying epilepsy, the microdialysis technique is often combined with short-term or even long-term video-electroencephalography (EEG) monitoring to assess spontaneous seizure frequency, severity, progression and clustering. The combined microdialysis-EEG is based on the use of several methods and instruments. Here, we performed in vivo microdialysis and continuous video-EEG recording to monitor glutamate and aspartate outflow over time, in different phases of the natural history of epilepsy in a rat model. This combined approach allows the pairing of changes in the neurotransmitter release with specific stages of the disease development and progression. The amino acid concentration in the dialysate was determined by liquid chromatography. Here, we describe the methods and outline the principal precautionary measures one should take during in vivo microdialysis-EEG, with particular attention to the stereotaxic surgery, basal and high potassium stimulation during microdialysis, depth electrode EEG recording and high-performance liquid chromatography analysis of aspartate and glutamate in the dialysate. This approach may be adapted to test a variety of drug or disease induced changes of the physiological concentrations of aspartate and glutamate in the brain. Depending on the availability of an appropriate analytical assay, it may be further used to test different soluble molecules when employing EEG recording at the same time.


Asunto(s)
Electroencefalografía/métodos , Aminoácidos Excitadores/metabolismo , Microdiálisis/métodos , Animales , Masculino , Ratas
12.
Front Cell Neurosci ; 12: 212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034326

RESUMEN

[This corrects the article DOI: 10.3389/fncel.2018.00147.].

13.
Front Cell Neurosci ; 12: 147, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896092

RESUMEN

One third of the epilepsies are refractory to conventional antiepileptic drugs (AEDs) and, therefore, identification of new therapies is highly needed. Here, we briefly describe two approaches, direct cell grafting and gene therapy, that may represent alternatives to conventional drugs for the treatment of focal epilepsies. In addition, we discuss more in detail some new tools, cell based-biodelivery systems (encapsulated cell biodelivery (ECB) devices) and new generation gene therapy vectors, which may help in the progress toward clinical translation. The field is advancing rapidly, and there is optimism that cell and/or gene therapy strategies will soon be ready for testing in drug-resistant epileptic patients.

14.
Mol Ther Methods Clin Dev ; 9: 211-224, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29766029

RESUMEN

Brain-derived neurotrophic factor (BDNF) may represent a therapeutic for chronic epilepsy, but evaluating its potential is complicated by difficulties in its delivery to the brain. Here, we describe the effects on epileptic seizures of encapsulated cell biodelivery (ECB) devices filled with genetically modified human cells engineered to release BDNF. These devices, implanted into the hippocampus of pilocarpine-treated rats, highly decreased the frequency of spontaneous seizures by more than 80%. These benefits were associated with improved cognitive performance, as epileptic rats treated with BDNF performed significantly better on a novel object recognition test. Importantly, long-term BDNF delivery did not alter normal behaviors such as general activity or sleep/wake patterns. Detailed immunohistochemical analyses revealed that the neurological benefits of BDNF were associated with several anatomical changes, including reduction in degenerating cells and normalization of hippocampal volume, neuronal counts (including parvalbumin-positive interneurons), and neurogenesis. In conclusion, the present data suggest that BDNF, when continuously released in the epileptic hippocampus, reduces the frequency of generalized seizures, improves cognitive performance, and reverts many histological alterations associated with chronic epilepsy. Thus, ECB device-mediated long-term supplementation of BDNF in the epileptic tissue may represent a valid therapeutic strategy against epilepsy and some of its co-morbidities.

15.
J Vis Exp ; (131)2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29443027

RESUMEN

Microinjections have been used for a long time for the delivery of drugs or toxins within specific brain areas and, more recently, they have been used to deliver gene or cell therapy products. Unfortunately, current microinjection techniques use steel or glass needles that are suboptimal for multiple reasons: in particular, steel needles may cause tissue damage, and glass needles may bend when lowered deeply into the brain, missing the target region. In this article, we describe a protocol to prepare and use quartz needles that combine a number of useful features. These needles do not produce detectable tissue damage and, being very rigid, ensure reliable delivery in the desired brain region even when using deep coordinates. Moreover, it is possible to personalize the design of the needle by making multiple holes of the desired diameter. Multiple holes facilitate the injection of large amounts of solution within a larger area, whereas large holes facilitate the injection of cells. In addition, these quartz needles can be cleaned and re-used, such that the procedure becomes cost-effective.


Asunto(s)
Microinyecciones/instrumentación , Microinyecciones/métodos , Agujas , Animales , Encéfalo , Modelos Animales de Enfermedad , Humanos , Medicina de Precisión/instrumentación , Medicina de Precisión/métodos , Roedores
16.
PLoS One ; 11(3): e0150995, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26954758

RESUMEN

Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Expresión Génica , Silenciador del Gen , Vectores Genéticos/genética , Herpesvirus Humano 1/genética , Estado Epiléptico/genética , Animales , Conducta Animal , Línea Celular Tumoral , Chlorocebus aethiops , ADN sin Sentido/genética , Modelos Animales de Enfermedad , Orden Génico , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Hipocampo/metabolismo , Humanos , Masculino , Plásmidos/genética , Ratas , Estado Epiléptico/tratamiento farmacológico , Transgenes , Células Vero
17.
Sci Rep ; 5: 14143, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26382856

RESUMEN

The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR-181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis.


Asunto(s)
Epilepsia/genética , Hipocampo/citología , Hipocampo/metabolismo , MicroARNs/genética , Células Piramidales/metabolismo , Transcriptoma , Adulto , Animales , Biomarcadores , Estudios de Casos y Controles , Análisis por Conglomerados , Epilepsia/sangre , Epilepsia/inducido químicamente , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Pilocarpina/efectos adversos , Ratas
18.
Exp Neurol ; 257: 39-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24768627

RESUMEN

The alterations in GABA release have not yet been systematically measured along the natural course of temporal lobe epilepsy. In this work, we analyzed GABA extracellular concentrations (using in vivo microdialysis under basal and high K(+)-evoked conditions) and loss of two GABA interneuron populations (parvalbumin and somatostatin neurons) in the ventral hippocampus at different time-points after pilocarpine-induced status epilepticus in the rat, i.e. during development and progression of epilepsy. We found that (i) during the latent period between the epileptogenic insult, status epilepticus, and the first spontaneous seizure, basal GABA outflow was reduced to about one third of control values while the number of parvalbumin-positive cells was reduced by about 50% and that of somatostatin-positive cells by about 25%; nonetheless, high K(+) stimulation increased extracellular GABA in a proportionally greater manner during latency than under control conditions; (ii) at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made in humans) this increased responsiveness to stimulation disappeared, i.e. there was no longer any compensation for GABA cell loss; (iii) thereafter, this dysfunction remained constant until a late phase of the disease. These data suggest that a GABAergic hyper-responsiveness can compensate for GABA cell loss and protect from occurrence of seizures during latency, whereas impaired extracellular GABA levels can favor the occurrence of spontaneous recurrent seizures and the maintenance of an epileptic state.


Asunto(s)
Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Hipocampo/metabolismo , Agonistas Muscarínicos/toxicidad , Pilocarpina/toxicidad , Ácido gamma-Aminobutírico/metabolismo , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Técnicas In Vitro , Masculino , Microdiálisis , Neuronas/metabolismo , Parvalbúminas/metabolismo , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Somatostatina/metabolismo , Tetrodotoxina/farmacología , Factores de Tiempo , Grabación en Video
19.
Neurobiol Dis ; 47(2): 216-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22538221

RESUMEN

Unverricht-Lundborg disease (ULD) is the most common progressive myoclonic epilepsy. Its etiology has been identified in a defect of a protease inhibitor, cystatin B (CSTB), but the mechanism(s) by which this defect translates in the clinical manifestations of the disease are still obscure. We tested the hypothesis that ULD is accompanied by a loss of cortical GABA inhibition in a murine model (the CSTB knockout mouse) and in a human case. Cortical GABA signaling has been investigated measuring VGAT immunohistochemistry (a histological marker of the density of GABA terminals), GABA release from synaptosomes and paired-pulse stimulation. In CSTB knockout mice, a progressive decrease in neocortex thickness was found, associated with a prevalent loss of GABA interneurons. A marked reduction in VGAT labeling was found in the cortex of both CSTB knockout mice and an ULD patient. This implicates a reduction in GABA synaptic transmission, which was confirmed in the mouse model as reduction in GABA release from isolated nerve terminals and as loss of electrophysiologically measured GABA inhibition. The alterations in VGAT immunolabeling progressed in time, paralleling the worsening of myoclonus. These results provide direct evidence that loss of cortical GABA input occurs in a relevant animal model and in a case of human ULD, leading to a condition of latent hyperexcitability that favors myoclonus and seizures. These findings contribute to the understanding of the pathogenic mechanism of ULD and of the neurobiological basis of the effect of currently employed drugs.


Asunto(s)
Corteza Cerebral/patología , Terminales Presinápticos/patología , Síndrome de Unverricht-Lundborg/patología , Ácido gamma-Aminobutírico/deficiencia , Adulto , Animales , Corteza Cerebral/metabolismo , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Persona de Mediana Edad , Terminales Presinápticos/metabolismo , Síndrome de Unverricht-Lundborg/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...