Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38592786

RESUMEN

Teucrium chamaedrys L. is a typical European-Mediterranean species of the genus Teucrium. Among the phenolic compounds belonging to phenylethanoid glycosides (PGs), teucrioside (TS) is only found in this species, and it was previously demonstrated to be produced by in vitro-elicited cell cultures at levels higher than those found in leaves. However, T. chamaedrys cell suspension extracts (Cell-Ex) and pure TS have not been investigated yet for any biological effects. In this study, we evaluated the antioxidant and anti-melanogenesis activity of both Cell-Ex and TS in B16-F10 mouse melanoma cells. The results showed that Cell-Ex inhibited the reactive oxygen species formation evoked in B16-F10 cells by tert-butyl hydroperoxide and 5 J/cm2 of UVA, as well as the melanin increase stimulated by α-MSH or 20 J/cm2 of UVA. In parallel, a TS concentration equivalent to that present in Cell-Ex recorded the same biological effect profile, suggesting the main contribution of TS to the antioxidant and anti-melanogenic properties of Cell-Ex. Both Cell-Ex and TS also modulated the melanogenesis pathway through their ability to inhibit the tyrosinase activity both in a cell-free system and in B16-F10 cells stimulated by α-MSH. These results support the potential cosmeceutical use of Cell-Ex for protection against photooxidative damage and hyperpigmentation.

2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834521

RESUMEN

Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Caballos , Animales , Líquido Sinovial , Células Cultivadas , Osteoartritis/metabolismo , Senescencia Celular/fisiología , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Condrogénesis
3.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36765949

RESUMEN

Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.

4.
Int J Legal Med ; 137(4): 1039-1049, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36786894

RESUMEN

The most common pulmonary findings in opiate-related fatalities are congestion and oedema, as well as acute and/or chronic alveolar haemorrhage, the cause of which is thought to be a damage to the capillary endothelium related to ischemia. Human vascular mesenchymal stromal cells (vMSCs) play a fundamental role in tissue regeneration and repair after endothelial cell injury, and they express opioid receptors. The aim of this study was to assess the effect of in vitro morphine exposure on the physiological activity and maintenance of human vMSCs. vMSCs were obtained from abdominal aorta fragments collected during surgery repair and were exposed to incremental doses (0.1 mM, 0.4 mM, 0.8 mM and 1 mM) of morphine sulphate for 7 days. The effect was investigated through cell viability assessment, proliferation assay, reactive oxygen species (ROS) detection assay, senescence-associated ß-galactosidase assay, senescent-related markers (p21WAF1/CIP1 and p16INK4) and the apoptosis-related marker caspase 3. Moreover, an ultrastructural analysis by transmission electron microscopy and in vitro vascular differentiation were evaluated. Results showed a decrease of the cellular metabolic activity, a pro-oxidant and pro-senescence effect, an increase in intracellular ROS and the activation of the apoptosis signalling, as well as ultrastructural modifications and impairment of vascular differentiation after morphine treatment of vMSC. Although confirmation studies are required on real fatal opiate intoxications, the approach based on morphological and immunofluorescence methodologies may have a high potential also as a useful tool or as a complementary method in forensic pathology. The application of these techniques in the future may lead to the identification of new markers and morphological parameters useful as complementary investigations for drug-related deaths.


Asunto(s)
Células Madre Mesenquimatosas , Alcaloides Opiáceos , Humanos , Senescencia Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Alcaloides Opiáceos/farmacología , Células Madre Mesenquimatosas/metabolismo , Derivados de la Morfina/farmacología
5.
Microorganisms ; 10(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36144320

RESUMEN

Mother-to-newborn COVID-19 transmission is mainly postnatal, but single-case reports and small case series have also described SARS-CoV-2 transplacental transmission. Unfortunately, studies regarding vertical transmission of SARS-CoV-2 lack systematic approaches to diagnosis and classification. So far, scientific evidence seems to suggest that the severity of maternal infection increases the risk of vertical transmission. We report two neonates born from COVID-19-positive mothers, of which one of the newborns had a vertical infection. The placental involvement, and consequent intrauterine transmission of SARS-CoV-2, were inversely related to the severity of the maternal disease. The description of cases divergent from current evidence on this topic could provide new insights to better understand SARS-CoV-2 vertical transmission.

6.
Theriogenology ; 177: 165-171, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710648

RESUMEN

Exfoliative cytology of human amniotic fluid (AF) has been extensively studied since 1940s, but no data exist in equine species. The AF compartment represents the environment in which the foetus grows and matures, and its composition changes, reflecting foetal well-being and development. The aim of this study was to describe for the first time the morphology of equine AF cells and amniotic membrane (AM) with light microscopy (LM) and transmission electron microscopy (TEM). AF was collected at parturition within 5 min after the appearance of the AM with a 60 mL syringe from 34 mares and samples of AM were collected from a subset of 7 mares with normal pregnancy hospitalized for attended parturition. For LM observation, a sample of cytocentrifuged fresh AF was stained with May-Grünwald Giemsa and AM sections were stained with H-E. For TEM observation, AF and AM were fixed, embedded in epoxy resins, then sectioned and stained with uranyl acetate and lead citrate solutions. Nucleated and anucleated squamous cells with basophilic cytoplasm, intensely basophilic cornified cells, polymorphonuclear cells, and clusters of eosinophilic amorphous substance were observed. Cells presumably derived from tracheal epithelium and small round nucleated cells with eosinophilic cytoplasm presumably derived from amniotic or urinary epithelium were occasionally found. Lamellar body-like structures (LBs) were present in some epithelial cells. In AM, epithelial, basal and mesenchymal layers were clearly visible with both techniques as previously described. Epithelial cells had several cytoplasmic vacuolization and microvilli were present on apical surface. The connective tissue presented fibroblasts, mesenchymal and rare polymorphonuclear cells, surrounded by abundant extracellular matrix, with distribution of collagen fibres. This is the first report about equine amniotic compartment description by LM and TEM. As recently reported in human medicine, the AM could be a second potential source of pulmonary surfactant, given the finding of LBs inside the cells which could have the same function as in humans. Further studies in samples collected at different gestational ages could increase the knowledge of AF cells and their modification during pregnancy, as well as a better comprehension of the role of AM as a secondary source of pulmonary surfactant in the horse. The diagnostic evaluation of AF cellular composition in high-risk pregnancies may also be investigated.


Asunto(s)
Amnios , Líquido Amniótico , Animales , Células Epiteliales , Femenino , Edad Gestacional , Caballos , Parto , Embarazo
7.
Int J Legal Med ; 136(1): 357-364, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34196786

RESUMEN

Insects found at a crime scene can produce traces referred to as fly artifacts (FA) due to their movement over the corpse and the manner in which they feed upon it. These can be detrimental for carrying out criminal investigations. Confusing a FA with a genuine bloodspot can lead to misinterpretations, also taking into consideration that FA may contain a human DNA profile. The aim of the present study was to employ scanning electron microscopy (SEM) for the analysis of FA produced by Calliphora vomitoria on hard surfaces and fabrics that are commonly present at crime scenes. FA and control bloodstains were produced under experimental conditions on metal, glass, plaster, cotton, and polyester. After macroscopic analysis, FA were examined at standard low (20-40 ×), medium low (300-600 ×), and high ultrastructural (1200 ×) magnification through a SEM Stereoscan 360, Leica, Cambridge. SEM analysis enabled the identification of distinctive features of FA on hard surfaces, namely, amorphous crystals, micro-crystals with a morphology similar to those of uric or micro-crystals with a comparable morphology to cholesterol, absent in controls. Moreover, red blood cells (RBC) were absent in FA but were always present in controls. On cotton, for both FA and controls, the drop was almost completely absorbed and thus indistinguishable from the underlying fabric texture. On polyester, FA showed amorphous/crystal-like deposits and no RBC, as observed on hard surfaces, except for those showing a completely flat surface. SEM analysis appeared to be suitable for differential diagnosis between FA and genuine bloodstains on hard surfaces, although the results may be inconclusive on tested fabrics.


Asunto(s)
Manchas de Sangre , Dípteros , Animales , Artefactos , Calliphoridae , Humanos , Microscopía Electrónica de Rastreo
8.
Artículo en Inglés | MEDLINE | ID: mdl-34948857

RESUMEN

Most medical and health science schools adopt innovative tools to implement the teaching of anatomy to their undergraduate students. The increase in technological resources for educational purposes allows the use of virtual systems in the field of medicine, which can be considered decisive for improving anatomical knowledge, a requisite for safe and competent medical practice. Among these virtual tools, the Anatomage Table 7.0 represents, to date, a pivotal anatomical device for student education and training medical professionals. This review focuses attention on the potential of the Anatomage Table in the anatomical learning process and clinical practice by discussing these topics based on recent publication findings and describing their trends during the COVID-19 pandemic period. The reports documented a great interest in and a positive impact of the use of this technological table by medical students for teaching gross anatomy. Anatomage allows to describe, with accuracy and at high resolution, organ structure, vascularization, and innervation, as well as enables to familiarize with radiological images of real patients by improving knowledge in the radiological and surgical fields. Furthermore, its use can be considered strategic in a pandemic period, since it ensures, through an online platform, the continuation of anatomical and surgical training on dissecting cadavers.


Asunto(s)
COVID-19 , Instrucción por Computador , Educación de Pregrado en Medicina , Estudiantes de Medicina , Curriculum , Disección , Humanos , Pandemias , SARS-CoV-2
9.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681268

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene. This mutation leads to the production of mutant HTT (mHTT) protein which triggers neuronal death through several mechanisms. Here, we investigated the neuroprotective effects of esculetin (ESC), a bioactive phenolic compound, in an inducible PC12 model and a transgenic Drosophila melanogaster model of HD, both of which express mHTT fragments. ESC partially inhibited the progression of mHTT aggregation and reduced neuronal death through its ability to counteract the oxidative stress and mitochondria impairment elicited by mHTT in the PC12 model. The ability of ESC to counteract neuronal death was also confirmed in the transgenic Drosophila model. Although ESC did not modify the lifespan of the transgenic Drosophila, it still seemed to have a positive impact on the HD phenotype of this model. Based on our findings, ESC may be further studied as a potential neuroprotective agent in a rodent transgenic model of HD.

10.
Sci Rep ; 11(1): 19248, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584173

RESUMEN

The discovery of the expression of opioid receptors in the skin and their role in orchestrating the process of tissue repair gave rise to questions regarding the potential effects of clinical morphine treatment in wound healing. Although short term treatment was reported to improve tissue regeneration, in vivo chronic administration was associated to an impairment of the physiological healing process and systemic fibrosis. Human mesenchymal stem cells (hMSCs) play a fundamental role in tissue regeneration. In this regard, acute morphine exposition was recently reported to impact negatively on the functional characteristics of hMSCs, but little is currently known about its long-term effects. To determine how a prolonged treatment could impair their functional characteristics, we exposed hMSCs to increasing morphine concentrations respectively for nine and eighteen days, evaluating in particular the fibrogenic potential exerted by the long-term exposition. Our results showed a time dependent cell viability decline, and conditions compatible with a cellular senescent state. Ultrastructural and protein expression analysis were indicative of increased autophagy, suggesting a relation to a detoxification activity. In addition, the enhanced transcription observed for the genes involved in the synthesis and regulation of type I collagen suggested the possibility that a prolonged morphine treatment might exert its fibrotic potential risk, even involving the hMSCs.


Asunto(s)
Células Madre Mesenquimatosas/efectos de los fármacos , Morfina/toxicidad , Cicatrización de Heridas/efectos de los fármacos , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/análisis , Colágeno Tipo I/metabolismo , Fibrosis , Humanos , Células Madre Mesenquimatosas/fisiología , Cultivo Primario de Células , Pruebas de Toxicidad Subaguda
11.
Colloids Surf B Biointerfaces ; 207: 111989, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34303114

RESUMEN

Hydrogels based on short peptide molecules are interesting biomaterials with wide present and prospective use in biotechnologies. A well-known possible drawback of these materials can be their limited mechanical performance. In order to overcome this problem, we prepared Fmoc-Phe3self-assembling peptides by a biocatalytic approach, and we reinforced the hydrogel with graphene oxide nanosheets. The formulation here proposed confers to the hydrogel additional physicochemical properties without hampering peptide self-assembly. We investigated in depth the effect of nanocarbon morphology on hydrogel properties (i.e. morphology, viscoelastic properties, stiffness, resistance to an applied stress). In view of further developments towards possible clinical applications, we have preliminarily tested the biocompatibility of the composites. Our results showed that the innovative hydrogel composite formulation based on FmocPhe3 and GO is a biomaterial with improved mechanical properties that appears suitable for the development of biotechnological applications.


Asunto(s)
Grafito , Hidrogeles , Péptidos , Estudios Prospectivos
12.
Ann Anat ; 238: 151761, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34139280

RESUMEN

In Italy, recent legislation (Law No. 10/2020) has tuned regulations concerning the donation of one's postmortem body and tissues for study, training, and scientific research purposes. This study discusses several specific issues to optimise the applicability and effectiveness of such an important, novel regulatory setting. Critical issues arise concerning the learners, the type of training and teaching activities that can be planned, the position of academic anatomy institutes, the role of family members in the donation process, the time frame of the donation process, the eligibility of partial donation, or the simultaneous donation of organs and tissues to patients awaiting transplantation. In particular, a universal time limit for donations (i.e., one year) makes it impossible to plan the long-term use of specific body parts, which could be effectively preserved for the advanced teaching and training of medical students and surgeons. The abovementioned conditions lead to the limited use of corpses, thus resulting in the inefficiency of the whole system of body donation. Overall, the donors' scope for the donation of their body could be best honoured by a more flexible and tuneable approach that can be used on a case-by-case basis. Furthermore, it is deemed necessary to closely monitor the events scheduled for corpses in public nonacademic institutions or private enterprises. This paper presents useful insights from Italian anatomists with the hope of providing inspiration for drafting the regulations. In conclusion, this paper focuses on the critical issues derived from the recently introduced Italian law on the donation and use of the body after death and provides suggestions to lawmakers for future implementations.


Asunto(s)
Anatomistas , Estudiantes de Medicina , Obtención de Tejidos y Órganos , Cadáver , Humanos , Italia , Donantes de Tejidos
13.
Mech Ageing Dev ; 197: 111515, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34062172

RESUMEN

Cellular senescence is a hallmark of ageing and it plays a key role in the development of age-related diseases. Abdominal aortic aneurysm (AAA) is an age related degenerative vascular disorder, characterized by a progressive dilatation of the vascular wall and high risk of rupture over time. Nowadays, no pharmacological therapies are available and the understanding of the molecular mechanisms that lead to AAA onset and development are poorly defined. In this study we investigated the cellular features of senescence in vascular mesenchymal stromal cells, isolated from pathological (AAA - MSCs) and healthy (h - MSCs) segments of human abdominal aorta and their implication in impairing the vascular repair ability of MSCs. Cell proliferation, ROS production, cell surface area, the expression of cyclin dependent kinase inhibitors p21CIP1 and p16INK4a, the activation of the DNA damage response and a dysregulated autophagy showed a senescent state in AAA - MSCs compared to h-MSCs. Moreover, a reduced ability to differentiate toward endothelial cells was observed in AAA - MSCs. All these data suggest that the accumulation of senescent vascular MSCs over time impairs their remodeling ability during ageing. This condition could support the onset and development of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Proliferación Celular , Senescencia Celular , Células Madre Mesenquimatosas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Masculino
14.
Clin Oral Investig ; 25(8): 5067-5075, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33569677

RESUMEN

OBJECTIVES: Matrix metalloproteases (MMPs) are a family of enzymes that operate a proteolytic activity at the level of the extracellular matrix. MMPs are regulated by tissue inhibitors of metalloproteinases (TIMPs) that can ubiquitously bind different enzyme forms. The study aims to identify a morfo-functional association between TIMP-1 and MMP-2 and -9 in human dentin. MATERIALS AND METHODS: Proteins were extracted from demineralized human sound dentin powder and centrifuged to separate two aliquots with different molecular weights of proteins, higher and lower than 30 kDa. In each aliquot, the evaluation of the presence of TIMP-1/MMP-2 and TIMP-1/MMP-9 was performed using co-immunoprecipitation/immunoblotting analysis. The distribution of TIMP-1, in association with MMP-2 and -9, was investigated using a double immunohistochemical technique. Furthermore, the activity of TIMP-1 was measured by reverse zymography, where acrylamide gel was copolymerized with gelatin and recombinant MMP-2. RESULTS: Co-immunoprecipitation/immunoblotting analysis showed the association TIMP-1/MMP-2 and TIMP-1/MMP-9 in human sound dentin. Electron microscopy evaluation revealed a diffuse presence of TIMP-1 tightly associated with MMP-2 and -9. Reverse zymography analysis confirmed that TIMP-1 present in human dentin is active and can bind different MMPs isoforms. CONCLUSIONS: The strict association of TIMP-1 with MMP-2 and -9 in situ appeared a constant finding in the human sound dentin. CLINICAL RELEVANCE: Considering the role of TIMP-1, MMP-2, and MMP-9 within the connective tissues, clinically applicable protocols could be developed in the future to increase or decrease the level of TIMPs in human dentin to regulate the activity of MMPs, contributing to reduce caries progression and collagen degradation.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Inhibidor Tisular de Metaloproteinasa-1 , Dentina , Humanos , Metaloproteinasa 9 de la Matriz , Metaloproteinasas de la Matriz , Inhibidores Tisulares de Metaloproteinasas
15.
Cell Mol Life Sci ; 78(6): 2781-2795, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33034697

RESUMEN

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/patología , Lamina Tipo B/metabolismo , Transducción de Señal , Astrocitos/citología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Mediadores de Inflamación/metabolismo , Lamina Tipo B/genética , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Receptores OSM-LIF/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Nanomaterials (Basel) ; 10(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244572

RESUMEN

BACKGROUND: Titanium implant surfaces are continuously modified to improve biocompatibility and to promote osteointegration. Graphene oxide (GO) has been successfully used to ameliorate biomaterial performances, in terms of implant integration with host tissue. The aim of this study is to evaluate the Dental Pulp Stem Cells (DPSCs) viability, cytotoxic response, and osteogenic differentiation capability in the presence of GO-coated titanium surfaces. METHODS: Two titanium discs types, machined (control, Crtl) and sandblasted and acid-etched (test, Test) discs, were covalently functionalized with GO. The ability of the GO-functionalized substrates to allow the proliferation and differentiation of DPSCs, as well as their cytotoxic potential, were assessed. RESULTS: The functionalization procedures provide a homogeneous coating with GO of the titanium surface in both control and test substrates, with unchanged surface roughness with respect to the untreated surfaces. All samples show the deposition of extracellular matrix, more pronounced in the test and GO-functionalized test discs. GO-functionalized test samples evidenced a significant viability, with no cytotoxic response and a remarkable early stage proliferation of DPSCs cells, followed by their successful differentiation into osteoblasts. CONCLUSIONS: The described protocol of GO-functionalization provides a novel not cytotoxic biomaterial that is able to stimulate cell viability and that better and more quickly induces osteogenic differentiation with respect to simple titanium discs. Our findings pave the way to exploit this GO-functionalization protocol for the production of novel dental implant materials that display improved integration with the host tissue.

17.
Artículo en Inglés | MEDLINE | ID: mdl-32258004

RESUMEN

Amniotic membrane (AM) is considered an important medical device with many applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. An important goal that still remains to be achieved is the identification of cultural and preservation protocols able to maintain in time the membrane morphology and the biological properties of its cells. Recently, our research group demonstrated that progesterone (P4) is crucial in preventing the loss of the epithelial phenotype of amniotic epithelial cells in vitro. Followed by this premise, it has been evaluated whether P4 may also affect AM properties in a short-term culture. Results confirm that P4 preserves AM integrity and architecture with respect to untreated AM, which showed alterations in morphology. Transmission electron microscopy (TEM) analyses demonstrate that P4 also maintains unaltered cell-cell junctions, nuclear status, and intracellular organelles. On the contrary, an untreated AM experienced an extensive cell death and a strong reduction of immunomodulatory properties, measured in terms of anti-inflammatory cytokine expression and secretion. Overall, these results could open to new strategies to ameliorate the protocols for cryopreservation and tissue culture, which represent preliminary stages of AM application in regenerative medicine.

18.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744123

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic and relapsing immune disorders that result, or possibly originate, from epithelial barrier defects. Intestinal organoids are a new reliable tool to investigate epithelial response in models of chronic inflammation. We produced organoids from the ulcerative colitis murine model Winnie to explore if the chronic inflammatory features observed in the parental intestine were preserved by the organoids. Furthermore, we investigated if quercetin administration to in vitro cultured organoids could suppress LPS-induced inflammation in wild-type organoids (WT-organoids) and spontaneous inflammation in ulcerative colitis organoids (UC-organoids). Our data demonstrate that small intestinal organoids obtained from Winnie mice retain the chronic intestinal inflammatory features characteristic of the parental tissue. Quercetin administration was able to suppress inflammation both in UC-organoids and in LPS-treated WT-organoids. Altogether, our data demonstrate that UC-organoids are a reliable experimental system for investigating chronic intestinal inflammation and pharmacological responses.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Quercetina/farmacología , Animales , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Lipocalina 2/genética , Lipocalina 2/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
Cancer Res ; 79(24): 6166-6177, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615807

RESUMEN

Approximately half of high-risk neuroblastoma is characterized by MYCN amplification. N-Myc promotes tumor progression by inducing cell growth and inhibiting differentiation. MYCN has also been shown to play an active role in mitochondrial metabolism, but this relationship is not well understood. Although N-Myc is a known driver of the disease, it remains a target for which no therapeutic drug exists. Here, we evaluated a novel MYCN-specific antigene PNA oligonucleotide (BGA002) in MYCN-amplified (MNA) or MYCN-expressing neuroblastoma and investigated the mechanism of its antitumor activity. MYCN mRNA and cell viability were reduced in a broad set of neuroblastoma cell lines following BGA002 treatment. Furthermore, BGA002 decreased N-Myc protein levels and apoptosis in MNA neuroblastoma. Analysis of gene expression data from patients with neuroblastoma revealed that MYCN was associated with increased reactive oxygen species (ROS), downregulated mitophagy, and poor prognosis. Inhibition of MYCN caused profound mitochondrial damage in MNA neuroblastoma cells through downregulation of the mitochondrial molecular chaperone TRAP1, which subsequently increased ROS. Correspondingly, inhibition of MYCN reactivated mitophagy. Systemic administration of BGA002 downregulated N-Myc and TRAP1, with a concomitant decrease in MNA neuroblastoma xenograft tumor weight. In conclusion, this study highlights the role of N-Myc in blocking mitophagy in neuroblastoma and in conferring protection to ROS in mitochondria through upregulation of TRAP1. BGA002 is a potently improved MYCN-specific antigene oligonucleotide that reverts N-Myc-dysregulated mitochondrial pathways, leading to loss of the protective effect of N-Myc against mitochondrial ROS. SIGNIFICANCE: A second generation antigene peptide oligonucleotide targeting MYCN induces mitochondrial damage and inhibits growth of MYCN-amplified neuroblastoma cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/patología , Ácidos Nucleicos de Péptidos/farmacología , Adolescente , Adulto , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Niño , Preescolar , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/mortalidad , Ácidos Nucleicos de Péptidos/genética , Ácidos Nucleicos de Péptidos/uso terapéutico , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
20.
Curr Drug Deliv ; 16(9): 807-817, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31577206

RESUMEN

OBJECTIVES: This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity. METHODS: The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide. RESULTS: All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy. CONCLUSION: Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Fenretinida/administración & dosificación , Nanoestructuras/administración & dosificación , Compuestos de Amonio Cuaternario/administración & dosificación , Animales , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Femenino , Fenretinida/química , Humanos , Ratones Desnudos , Micelas , Neoplasias/tratamiento farmacológico , Compuestos de Amonio Cuaternario/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...