Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 37(2): 550-563, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26861815

RESUMEN

The WNK-SPAK kinase signaling pathway controls renal NaCl reabsorption and systemic blood pressure by regulating ion transporters and channels. A WNK3-SPAK complex is highly expressed in brain, but its function in this organ remains unclear. Here, we investigated the role of this kinase complex in brain edema and white matter injury after ischemic stroke. Wild-type, WNK3 knockout, and SPAK heterozygous or knockout mice underwent transient middle cerebral artery occlusion. One cohort of mice underwent magnetic resonance imaging. Ex-vivo brains three days post-ischemia were imaged by slice-selective spin-echo diffusion tensor imaging magnetic resonance imaging, after which the same brain tissues were subjected to immunofluorescence staining. A second cohort of mice underwent neurological deficit analysis up to 14 days post-transient middle cerebral artery occlusion. Relative to wild-type mice, WNK3 knockout, SPAK heterozygous, and SPAK knockout mice each exhibited a >50% reduction in infarct size and associated cerebral edema, significantly less demyelination, and improved neurological outcomes. We conclude that WNK3-SPAK signaling regulates brain swelling, gray matter injury, and demyelination after ischemic stroke, and that WNK3-SPAK inhibition has therapeutic potential for treating malignant cerebral edema in the setting of middle cerebral artery stroke.


Asunto(s)
Edema Encefálico/genética , Encéfalo/patología , Eliminación de Gen , Infarto de la Arteria Cerebral Media/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Encéfalo/metabolismo , Edema Encefálico/etiología , Edema Encefálico/patología , Femenino , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
2.
Carcinogenesis ; 37(9): 839-851, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27287871

RESUMEN

Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na(+)/H(+) exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia-glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1(+) microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-ß, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma-microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation.


Asunto(s)
Neoplasias Encefálicas/patología , Proteínas de Transporte de Catión/fisiología , Glioma/patología , Microglía/fisiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Proteínas de Unión al Calcio , Proteínas de Transporte de Catión/análisis , Línea Celular Tumoral , Movimiento Celular , Polaridad Celular , Proliferación Celular , Proteínas de Unión al ADN/análisis , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de Microfilamentos , Invasividad Neoplásica , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/análisis
3.
Prog Neurobiol ; 138-140: 19-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26965387

RESUMEN

Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Encéfalo/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA